
NPS-EC-14-002

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

PERFORMANCE OF HIGH-RELIABILITY SPACE-QUALIFIED

PROCESSORS IMPLEMENTING SOFTWARE DEFINED RADIOS

by

Herschel H. Loomis, Jr., George W. Dinolt, and Frank E. Kragh

March 2014

Approved for public release; distribution is unlimited

Prepared for: Secretary of the Air Force

THIS PAGE INTENTIONALLY LEFT BLANK

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other
aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information
Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other
provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)
31-03-2014

2. REPORT TYPE
Technical Report

3. DATES COVERED (From-To)
01-01-2012 to 31-12-2013

4. TITLE AND SUBTITLE
Performance of High-Reliability Space-Qualified Processors Implementing Software Defined
Radios

5a. CONTRACT NUMBER

5b. GRANT NUMBER
MIPR #R448212
5c. PROGRAM ELEMENT
NUMBER

6. AUTHOR(S)
Loomis, Herschel H., Jr.; Dinolt, George W.; Kragh, Frank E.

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) AND ADDRESS(ES)
Naval Postgraduate School, Department of Electrical and Computer Engineering, 833 Dyer Road,
Monterey, CA 93943-5121

8. PERFORMING
ORGANIZATION REPORT
NUMBER
NPS-EC-14-002

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
SAF/FMBIB-AFOY
PO Box 14200
Washington, DC 20044-4200

10. SPONSOR/MONITOR’S
ACRONYM(S)

11. SPONSOR/MONITOR’S
REPORT NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

This report provides results of a study of the application to software-defined radios (SDR) of the Maestro 49-tile Radiation-Hard-by-
Design multi-processor chip developed by Boeing Corporation for the U.S. Government using DARPA-developed radiation-hard chip
technology. The heart of the pipeline SDR architecture is an implementation of single-precision floating-point pipeline FFT. The
details of the software architecture to achieve the pipeline operation are presented. The performance of N-point FFTs for N = 128,
256, 512, 1024, and 2048 is reported as number of processor tiles is increased. Maximum FFT throughput achieved for a 2048-point
FFT is 27 million samples per second when 20 of the 49 available tiles are used for separate FFT blocks, one tile is used for input data
distribution, and one tile is used for output data collection. The performance of the complete SDR is projected based upon the FFT
experiments.

15. SUBJECT TERMS

Fault-tolerant Processors, Radiation-Hard Processors, FFTW, Software Defined Radio, SDR, Space-Qualified Processors
16. SECURITY CLASSIFICATION OF: 17. LIMITATION

OF ABSTRACT

UU

18. NUMBER
OF PAGES

76

19a. NAME OF
RESPONSIBLE PERSON
Herschel Loomis

a. REPORT

Unclassified

b. ABSTRACT

Unclassified

c. THIS PAGE

Unclassified 19b. TELEPHONE

NUMBER (include area code)
(831) 656-3214

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

i

THIS PAGE INTENTIONALLY LEFT BLANK

ii

NAVAL POSTGRADUATE SCHOOL
Monterey, California 93943-5000

Ronald A. Route Douglas A. Hensler
President Provost

The report entitled “Performance of High-Reliability Space-Qualified Processors
Implementing Software Defined Radios” was prepared for and funded by the Secretary of
the Air Force.

Further distribution of all or part of this report is authorized.

This report was prepared by:

Herschel H. Loomis, Jr. George W. Dinolt
Distinguished Professor Professor of the Practice

Frank E. Kragh
Associate Professor

Reviewed by: Released by:

R. Clark Robertson, Chairman Jeffrey D. Paduan
Electrical and Computer Engineering Dean of Research

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

ABSTRACT

This report provides results of a study of the application to software-defined

radios (SDR) of the Maestro 49-tile Radiation-Hard-by-Design multi-processor chip

developed by Boeing Corporation for the U.S. Government using DARPA-developed

radiation-hard chip technology. The heart of the pipeline SDR architecture is an

implementation of single-precision floating-point pipeline FFT. The details of the

software architecture to achieve the pipeline operation are presented. The performance of

N-point FFTs for N = 128, 256, 512, 1024, and 2048 is reported as number of processor

tiles is increased. Maximum FFT throughput achieved for a 2048-point FFT is 27 million

samples per second when 20 of the 49 available tiles are used for separate FFT blocks,

one tile is used for input data distribution, and one tile is used for output data collection.

The performance of the complete SDR is projected based upon the FFT experiments.

v

THIS PAGE INTENTIONALLY LEFT BLANK

vi

TABLE OF CONTENTS

I. INTRODUCTION... 1

A. PROBLEM STATEMENT .. 1
1. Specific Tasks Originally Proposed ... 1
2. Structure of Funded Work ... 1

B. BACKGROUND ... 1
C. REPORT ORGANIZATION ... 5

II. PIPELINED SDR ARCHITECTURE .. 6

A. SPECIFIC PRE-D DATA COMPRESSION SDR... 6
B. MAESTRO FFT ARCHITECTURES .. 8

1. Maestro SDR Architecture ... 9
2. FFT Program Used for FFT Tiles ... 11

III. MAESTRO-BASED FFT EXPERIMENTS ... 13

A. PIPELINE FFT IMPLEMENTATIONS .. 13
1. Verification of the Correctness of the FFTW ... 15

B. FFT PERFORMANCE MEASURING EXPERIMENTS 16
C. FFT EXPERIMENTAL RESULTS .. 17
D. APPLICATION OF RESULTS TO SDR PERFORMANCE 19

IV. CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER STUDY 21

A. CONCLUSIONS ... 21
B. RECOMMENDATIONS FOR FUTURE STUDY .. 22

APPENDIX A .. 25

1. makefile .. 25
2. Include File – simpledma.h .. 26
3. startdma.c .. 28
4. run_sender.c .. 31
5. run_receiver.c .. 34
6. run_sink.c .. 41
7. start3dma.c .. 45

APPENDIX B. ... 47

1. Data for N = 128 .. 47
2. Data for N = 256 .. 49
3. Data for N = 512 .. 51
4. Data for N = 1024 .. 53
5. Data for N = 2048 .. 55

LIST OF REFERENCES ... 59

INITIAL DISTRIBUTION LIST .. 61

vii

THIS PAGE INTENTIONALLY LEFT BLANK

viii

LIST OF FIGURES

Figure 1. Basic Concept of SDR (After [8]) ... 6
Figure 2. Block Diagram of Wright's SDR (After [8]) ... 8
Figure 3. Maestro 49-core MIPS Processor Architecture [14]. .. 9
Figure 4. Real-Time Basic Pipeline FFT Architecture as Applied to SDR 10
Figure 5. Real-Time Pipeline FFT Architecture ... 13
Figure 6. Chart of NPS Experimental Results .. 17
Figure 7. Projections from ISI paper compared to NPS results. 19

ix

THIS PAGE INTENTIONALLY LEFT BLANK

x

LIST OF TABLES

Table 1. FLOPs per Clock Cycle for Various FFT Sizes (after [14]) 11
Table 2. Pseudo-code for Maestro FFT Performance Test ... 16

xi

THIS PAGE INTENTIONALLY LEFT BLANK

xii

I. INTRODUCTION

A. PROBLEM STATEMENT
The work reported in this Technical Report was supported by the Secretary of the

Air Force as a result of a proposal submitted in September of 2011. [1]

1. Specific Tasks Originally Proposed

• We will develop algorithms for demonstration of the Maestro chip in space-based
[Software Defined Radio] SDR applications. We will produce MAESTRO-
development-board based demonstration of fundamental SDR processes, such as
fast Fourier transforms (FFTs), finite impulse response (FIR) filters, forward error
corrections encoders and decoders, and synchronization algorithms. If a
MAESTRO development board is unavailable, we will make use of our Tilera 64-
core development board.

• We will investigate the application of our previously developed SDR application
to the [Single Event Immune Reconfigurable FPGA] SIRF-developed RHBD
Virtex-5 chip.

2. Structure of Funded Work
The proposed work was funded in two annual increments, distributing the original

requested funding over the two years, FY 2012 and FY 2013. Period of performance of

the FY2013 increment was extended to 12/31/13.

B. BACKGROUND
Software defined radios (SDR) consist of a radio frequency front end (RFFE),

data converters (analog to digital and digital to analog converters), and reconfigurable

digital hardware. The modulation and encoding (for a transmitter) and the demodulation

and decoding (for a receiver) are performed by the reconfigurable digital hardware which

can be a microprocessor, a digital signal processor (DSP), a field programmable gate

array (FPGA), or some combination of these. Since the modulation and coding are

determined by the program that the microprocessor or DSP runs or the program that

configures the FPGA, these radios are called software defined radios (SDRs). SDRs are

reprogrammable, allowing them to transmit and receive any communications signal,

provided the RFFE can accommodate the frequencies involved, the data converter has

 1

sufficient sample rate and dynamic range, and the reconfigurable digital hardware has

sufficient processing capability.

 Radiation in space poses a considerable threat to modern microelectronic devices,

in particular to the high-performance low-cost computing capability we enjoy on earth.

These threats apply as well to the processors one would employ implementing SDRs in

space. These effects can be categorized as long-term permanent faults called total dose

effects and transient temporary effects called single event upsets (SEU). [2]

 Total dose effects must be mitigated by semiconductor manufacturing process

modification, or by selecting and testing parts to meet the total dose requirements of the

planned mission. Single event upsets are more difficult to prevent in modern, high-speed,

small-feature-size devices. So, while total-dose radiation-tolerant modern processors and

FPGAs are available, most modern current generation processors are very susceptible to

SEUs [2].

 Two notable exceptions to this generalization have emerged recently. The U.S.

Government has been sponsoring the OPERA project through which the Boeing Corp.

has produced a Radiation-Hard by Design (RHBD) 49-core (tile)1 multiprocessor chip

(MAESTRO) based on the architecture of the Tilera Corp. 64-tile chip [3]. This chip is

being made available to U.S. Government space computing applications. It has been

demonstrated at a U.S. Government sponsored Industry Day 9/29-9/30/2010 [4]. The

other is a project sponsored by the Air Force Research Lab for Xilinx Corp. to develop a

RHBD version of its Virtex-5 Field Programmable Gate Array (FPGA) chip [5].

 It has long been understood that replication of logic with voting circuitry can be

used to improve the reliability of digital systems in the presence of transient errors in the

logic, such as SEUs. [2] [6] We at the Naval Postgraduate School (NPS) have been

engaged in a project to build an evaluation board for a Triple Modular Redundant (TMR)

implementation of a RISC processor to validate the TMR architecture for employment in

a high-SEU environment. This evaluation board has evolved to a dual-FPGA processor

called the Configurable Fault-Tolerant Processor (CFTP). The research has led us to the

conclusion that the TMR architecture is an effective one to enhance the resistance of a

11 CCoorree iiss tthhee mmoorree ccoommmmoonnllyy--uusseedd tteerrmm ffoorr aa pprroocceessssoorr oonn aa mmuullttii--pprroocceessssoorr cchhiipp..
TTiilleerraa CCoorrpp.. uusseess tthhee ssyynnoonnyymm ttiillee iinn iittss lliitteerraattuurree aanndd aass ppaarrtt ooff iittss nnaammee..

 2

processor to SEUs so that the computer could operate reliably in the hostile environment

of low earth orbit. [7]

 The NPS is conducting research and education programs in SDR, including thesis

research in SDR design of transceivers for IEEE 802.11 wireless LANs, IEEE 802.16

wireless MANs, and IS-95B and cdma2000 mobile telephony, and the course EC4530

Soft Radio. This work includes software defined radios consistent with the Software

Communications Architecture (SCA), microprocessor-based SDRs, and most recently

FPGA-based SDR design. The Naval Postgraduate School’s Communications Research

Laboratory is equipped for SDR design with eight software defined radio design stations

including programming design environments, RFFEs, and microprocessor and FPGA

modules.

 SDRs are a natural fit for satellite applications because they can be changed via

reprogramming after launch, thereby allowing new functionality and/or design

improvement at any time in the spacecraft’s lifecycle. It is expected this will make the

satellite more useful over its lifespan including more operationally responsive.

Furthermore, a single SDR can receive multiple dissimilar communications signals

simultaneously and be reconfigured to receive different signals at different times – for

example, different signals over different areas of the world.

 The Naval Postgraduate School is currently at work on a project to design the

software for a fault tolerant SDR suitable for hardware (FPGAs) already on orbit. The

proposed SDR will process pre-demodulated signals in order to compress the signals for

potential passing to the downlink. It is presumed that the downlink does not have

sufficient bandwidth to pass the entire pre-demodulated signal. The compression

algorithm will be configurable by ground operators who will set signal power thresholds

for frequency ranges and time durations of interest. The compression will be

accomplished by passing only those frequency ranges-time durations of the signal that

exceed the relevant power threshold. The basic SDR design has been proven by Wright

[8] and further refined by Livingston [9]. The FPGA configuration is being made fault

tolerant by applying the methods learned in this research program and will be tested on

the Algorithmic WorkStation (AWS) prior to being tested on an on-orbit FPGA.

 3

 A key component of this SDR is a high-speed pipeline Fast Fourier Transform

(FFT) unit. We have had an earlier research effort on the realization of high-speed,

pipelined FFTs. It developed the architecture for a high-speed pipelined signal processor

for the computation of the Cyclic Spectrum [10] of which the principal component is an

FFT processor.

A recent thesis has developed the realization of a Radix-4 64-point real-time FFT

implemented and simulated in a Virtex-II FPGA [11]. This design was implemented with

both TMR and RPR fault-amelioration techniques and showed a modest improvement in

resource utilization of the RPR technique over TMR. Unfortunately, the fault-tolerant

FFTs were not available in time for testing last summer in the UC Davis cyclotron.

 The NPS investigators also have experience with the multi-core processor

architecture that is exploited in the Boeing-developed MAESTRO chip. We have

investigated ways to enhance the designed-in RHBD technology of the chip [12]. We

have looked into ways to utilize the multi-core architecture for the implementation of

SDRs and some particular SIGINT algorithms.

 The NPS investigators have also had some hands-on experience with the Tilera

processor on which the MAESTRO is based. At the time we investigated how we might

implement highly reliable, high-speed implementations of encryption and hashing

algorithms utilizing the pipelined architecture available on the Tilera. We investigated

how to take advantage of the allocations of specific portions of the chip to specific

functions, i.e. how the chip design supports physical redundancy and where there might

be potential single points of failure. We compared this architecture to the Cell

Broadband Engine, a different multi-core approach. Although we did not do a complete

implementation of the encryption algorithms on the Tilera, our analysis indicated that its

speed for hashing and encryption would be roughly comparable that of the Cell with

possibly greater resistance to hardware failure.

Based on this experience with the implementation of high-speed pipelined

processors and the design of high-performance reliable processors for the space

environment, we have studied the use of the Maestro RHBD multi-core processor for the

implementation of a SDR to perform data compression on broad-band pre-demodulated

signals.

 4

C. REPORT ORGANIZATION
In Chapter II, the architecture of the pipelined SDR is developed and techniques

for the implementation of the pipelined FFT on Maestro are developed. Chapter III

presents the design of the Maestro-Development-Board hosted experiments and the

results of the experiments. Finally, conclusions and recommendations for future research

and development efforts are the topic of Chapter IV.

 5

II. PIPELINED SDR ARCHITECTURE

A. SPECIFIC PRE-D DATA COMPRESSION SDR

The basic SDR that was the motivation and implementation target for the research

was developed in master’s theses by Livingston [9], Wright [8], and Humberd [13]. The

radio would monitor a band of the RF spectrum of bandwidth B. It would convert that

band-limited portion of the RF to digital samples at a sample rate, sf , such that 2sf B>

, the Nyquist rate. Then, the SDR computes N-point FFTs of each successive N-point

block of input data samples. For each N-point block of complex frequency data, the

magnitudes of all the positive frequency components are computed. Then, the frequency

indices of each magnitude that exceeds a specified threshold [and in a specified

frequency sub-band] are identified and the corresponding complex-frequency values are

reported. Figure 1 Illustrates how this works. The left-hand panel shows the magnitude of

the FFT versus time. A block of five time-units worth of data is transformed at a time.

The SDR is looking for significant signal components, i.e., data above the “blue-contour”

magnitude, while ignoring weak signal components. The magnitudes exceed the

threshold in the red-boxed areas in the spectrum diagram. The right-hand panel of the

figure shows the frequency components of the compressed signal. Only those

components in the red boxes are outputted, as frequency index and complex amplitude.

Figure 1. Basic Concept of SDR (After [8])

 6

If this SDR were placed in a satellite, then the selected frequency components

would be downlinked with a block identifier. Ground processing can reconstruct the

significant components of the signal by performing the inverse FFT on the selected

frequency components, block-by-block.

The frequency resolution of the SDR is simply N, the block size of the FFT, so the

potential compression ratio will be N/k for blocks with k FFT indices with power greater

than the threshold. For blocks with less signal power, no frequency components are

downlinked achieving an infinite compression ratio, although probably null blocks should

have their time stamp downlinked.

Figure 2 shows the block diagram of the computational processes that are required

to implement the SDR. It is desired that these processes be implemented in real time with

sample rates in the tens of megahertz. Two basic ways to accomplish this goal would be:

1. By use of a FPGA or Application-Specific Integrated Circuit (ASIC)

implementing pipeline versions of the major processor sub-blocks of

Figure 2.

2. By use of a multi-processor to compute separate N-point blocks of

selected frequency components in parallel.

 7

Figure 2. Block Diagram of Wright's SDR (After [8])

The use of parallel processors to do the computation relies on the fact that each N-

point FFT is independent of the others. So, as long as the blocks are time stamped, the

computation of Figure 2 can be carried out in a different processor with the selected

frequency-component blocks with their time stamp reassembled at the output. This latter

approach is the one that would be suitable for implementation of the SDR on a multi-core

processor such as Maestro.

B. MAESTRO FFT ARCHITECTURES
The basic Maestro multi-core architecture is shown in Figure 3. The architecture

of Maestro uses the intellectual property of the Tilera Corporation for its 64-core

commercial architecture. This architecture was purchased by the U.S. Government for

royalty-free use by the Government in space applications. The Boeing Corporation was

contracted by the Government to produce a 49-core RHBD chip, incorporating the basic

Tilera architecture and adding an IEEE-standard floating-point co-processor to each core.

N-point
digitized RF

sample blocks

Computation of N-point block

<< N selected
Frequency

components time-
origin identified

High throughput achieved by computing
individual blocks in parallel

 8

Tilera refers to its cores as tiles so we will use the term tile, which corresponds to the

usage in Tilera documentation.

Figure 3. Maestro 49-core MIPS Processor Architecture [14].

1. Maestro SDR Architecture
Figure 4 shows the basic architecture of the planned multi-core architecture of the

Maestro program to compute the real-time spectrum of the incoming sampled data

stream, select the components whose power exceeds a given threshold, and then output

the time index of the N-sample block and the frequency indices and complex magnitudes

of the spectrum.

 9

Figure 4. Real-Time Basic Pipeline FFT Architecture as Applied to SDR

The first tile in the process, the source tile, converts each 12-bit sample into a 32-

bit IEEE standard floating-point number and places the samples into p successive N-word

buffers. As each N-word buffer is filled, the source signals the associated FFT-select tile,

“Ready to Send a Block.”

Each of those p tiles performs the following operations:

• It waits for that “ready-to-send” signal and when received, initiates a

direct-memory-access (DMA) transfer of the block of data with time

stamp into the empty half of the input ping-pong buffer.

• It checks if the output ping-pong buffer is available and if it is,

o Computes the FFT of the full half of the input ping-pong buffer;

o tests the magnitude of the power in each positive-frequency

component of the spectrum;

o Loads the time stamp, number of components exceeding threshold,

frequency indices and their complex amplitudes into the empty

half of the output ping-pong buffer;

o Signals the output is available to the output tile.

The sink tile then performs the following operations:

• It waits for a signal from any of the p FFT-compute tiles, “ready to send”;

• It initiates a DMA transfer of the data block from that tile;

• It sends that data off chip.

pxN-word
ping-pong

data buffers
Fixed-

floating point
converter;

Data
Distributor

NN

NN
@ samp/ssf

N-Word
FFT

Process

N-Word
FFT

Process

2

2

Compute

, 0 / 2
Output

time index, ,

such that

k

k

k

X k N

k X

X T

≤ <

>

2

2

Compute

, 0 / 2
Output

time index, ,

such that

k

k

k

X k N

k X

X T

≤ <

>

p tiles

Output
block index;

complex
frequency;

and
frequency

index

Input
Real data
stream –

(12-bit fixed
point)

1 tile

1 tile
NN

N

pxN-word
ping-pong

data buffers

N

 10

Programming of the Maestro chip to exploit the parallelism displayed in Figure 4

is a very difficult process. The programmer must explicitly manage the data transfer

DMA operations between tiles, manage the ping-pong data buffering, as well as provide

computationally efficient processes to compute the FFTs and test for the significant

frequency components. Because of this complexity, it was decided to first implement a

simplified parallel algorithm to develop the techniques for distributing the data and to

exploit powerful FFT algorithms developed by others.

2. FFT Program Used for FFT Tiles
 The FFT program used in the tests reported here is a version of the FFTW

(“Fastest Fourier Transform in the West”) algorithm reported by Singh, et al. [14] In that

paper, the authors describe their adaptation of the FFTW algorithm to the Maestro chip

and their simulation studies of the performances with various sizes of FFT on Maestro

and their extrapolation of multi-tile performance. They calculated a net Floating Point

Operations (FLOPs) per clock cycle for a variety on FFT sizes. These results are

summarized in Table 1.

Table 1. FLOPs per Clock Cycle for Various FFT Sizes (after [14])

FFT size 64 256 1024 2048 4096
Flops/Cycle [14] 0.51 0.5 0.33 0.41 0.35

FLOPs/FFT 1920 10,240 51,200 112,640 245,760
Single-tile sf 65.95 10× 64.38 10× 62.31 10× 62.61 10× 62.04 10×

p-Tile sf 65.95 10 p× 64.38 10 p× 62.31 10 p× 62.61 10 p× 62.04 10 p×

We analyzed the results from [14] to obtain a digital sample rate or throughput for

a multi-tile FFTW implementation on Maestro. Based upon a number of real FLOPs per

FFT of 2logN N , we estimate a single-tile sample rate achievable by their FFTW also

shown in Table 1. Assuming no data distribution overhead in the operation of p FFT tiles

in parallel operating on different blocks, the sample rate should scale linearly with p, as

shown in the final row of Table 1. This final estimate gives us an upper bound on the

sample rate achievable from a p-tile parallel pipeline implementation of the ISI FFTW in

accordance with the structure shown in Figure 5.

This upper bound suggests that a 20-tile pipelined FFT could achieve real-time

FFT operating at a sample rate of 52 Mega-samples per second or less.

 11

In the next chapter, we discuss the details of our experiment to obtain a real-time

pipeline FFT and to verify the operation of our pipeline SDR architecture. Finally, it

presents the results of the performance experiments.

 12

III. MAESTRO-BASED FFT EXPERIMENTS

A. PIPELINE FFT IMPLEMENTATIONS
The process illustrated in Figure 4 that the FFT-select tile performs has two basic

components, the calculation of an N-point floating-point FFT and the selection of the

frequency components to downlink. The FFT has a computational requirement of

25 logFFTC N N= real floating point operations, whereas the selection portion of the

algorithm has 3
2s
NC = flops plus

2
N integer comparisons. (See Section D. for further

discussion of these complexity figures.) The dominant computational requirement comes

from the FFT, and hence it was decided that the most important process to implement

would be the multi-tile pipeline FFT. The structure of that pipeline real-time FFT process

is shown in Figure 5. This is very similar to the pipeline SDR architecture shown in

Figure 4; the selection portion of each tile’s process has been removed.

Figure 5. Real-Time Pipeline FFT Architecture

The operation of the pipeline FFT architecture is very similar to that of the SDR

architecture; only the selection process has been eliminated. The first tile in the process,

the source tile, converts each 12-bit sample into a 32-bit IEEE standard floating-point

number and places the samples into p successive N-word buffers. As each N-word buffer

is filled, the source signals the associated FFT-select tile, “Ready to Send a Block.”

pxN-word
ping-pong

data buffers

Source
distribution

tile

@ samp/secsf

N-Word
FFT

Process

2

Compute
, 0 1N

kX k≤ < −

p tiles

N-Word
FFT

Process

N

N

pxN-word
ping-pong

data buffers

N

N

N

N

N

N

Data-
collection
sink tile

2

Compute
, 0 1N

kX k≤ < −

 13

We used the system interfaces to the underlying tile-to-tile communications

functions provided in the MAESTRO “ilib” library and the “tmc” library functions to

allocate memory shared among processes. Documentation for these libraries is

distributed as part of the MAESTRO development environment [15].

 Note that each FFT tile is executing a separate Unix process with its own

“memory address space.” Along with a significant amount of book keeping and error

detection, each of these processes does the following:

• Receive Parameters from source process. This includes the address of the

shared memory buffers used to transmit blocks from the sender to the

receiver. We use the ilib_msg_broadcast library call to receive this

message

• Allocate “ping-pong” buffers using tmc_cmem_memalign to share with

the “data collection” process.

• Send a message to the data collection process via the ilib_send_msg call

of the address of the shared memory

• Receive message from “source” via the ilib_receive_msg call that a

message is ready to be collected.

• Copy via Direct Memory Access (DMA) the first source block from the

source using the ilib_mem_start_dma call and wait via the ilib_wait call

for the DMA to complete the copy. The ilib_mem_start_dma call sets up

internal structures on the two associated tiles and uses separate

mechanisms for the copy to take place. The CPU is not directly involved

in the copy process and can do other computations while the copying is

going on. When the copy is complete internal registers are set and the

CPU will wait for that to happen via the ilib_wait call.

• Start loop p – 1 times (p, number of parallel tiles, passed from the source

process)

o Receive message from source that another source buffer is ready

and then start DMA copy into 2nd buffer, but do not wait.

o Process FFT on the first buffer while the DMA copy is taking

place using the fftwf_execute_dft_r2c call.

 14

o Send a message to the data collection sink that this buffer is ready

using ilib_send_msg

o Using ilib_wait, wait for the DMA started above to complete

• Process the last FFT block and let data collection sink know.

The source and sink processes operate in a similar fashion using the same calls.

There is a 4th process, that starts each of the source, FFTW and sink tile processes and

establishes which specific tiles each runs on. This process “spawns” these by filling in a

set of parameters that describe the process to be run (via its file name), the number of

instances of the process and the location of the instances, passing this parameter to the

ilib_proc_spawn library call.

Note that the ordering of the N-sample complex-frequency-amplitude blocks is

maintained by the inclusion of the time stamp. This will permit recreation of the band-

limited sampled signal by simply taking the inverse FFT of each block.

Next, we implemented the structure of Figure 5 to experimentally measure the

sample rate of the parallel FFTW tiles. The C code for the FFTW was obtained from the

Maestro source code distribution web site. [15] The single-precision FFTW was only able

to be compiled without optimization. A version of a single tile’s code was compiled for

each value of block size (N) tested. The code used had a separately-compiled “wisdom”

file, used for FFTW internal optimization, for each block size tested, so that FFTW code

would not spend time setting up its configuration. The binary code for each tile’s FFTW,

including the ping-pong buffers is approximately eight MBytes. In the object code

generated, each floating-point instruction appears to be padded by 4-5 no-ops. The reason

for this apparently has to do with the communications between the floating point co-

processor and the main CPU. Each floating point instruction takes more time than the

completion of the message between the two entities.

1. Verification of the Correctness of the FFTW
The single-tile FFTW compiled code was tested for functional correctness for

values of N that would be used in the pipeline multi-tile performance tests, namely for

. For each value of N, a number of random data blocks

were generated and submitted to the compiled FFTW code. Those results were compared

to the results of Matlab® FFTs computed on the same random data blocks but using

{ }128,256,512,1024,2048N ∈

 15

double precision. The results agreed within the least significant mantissa bit of our single-

precision output. As a result, we had confidence that the compiled FFTW code was

functionally correct and that the performance data would be for a functionally correct

FFTW.

B. FFT PERFORMANCE MEASURING EXPERIMENTS
The experiments were conducted on the Maestro Development Board, loaned to

the Naval Postgraduate School by the U.S. Government. The board was operating at a

clock frequency of 350 MHz.

The software to implement the architecture of Figure 5 was created, compiled and

loaded on the MDB and 100,000 N-word blocks were submitted to the various programs.

The average throughput was measured and is reported for each value of N and for the

various numbers of parallel FFT-computing tiles. The samples are each 32-bit IEEE

standard floating point words. The pseudo-code statement of the experiment structure is

shown in Table 2.

Table 2. Pseudo-code for Maestro FFT Performance Test

 where N is FFT block size, p is the number of FFT tiles, and R is the number of runs.

f = 350,000,000
for

for p = 1:20
for R = 1:20

process 100,000 N -sample FP FFTs
count Maestro cycles, C (N,p,R)

end for
compute average

compute

end for
end for
plot family of curves for

 16

C. FFT EXPERIMENTAL RESULTS

The raw data, (), ,S N p collected from the experiments is given in Appendix C.

The results from the experiment are shown in Figure 6. In that figure are plotted

the curves of pipeline sample rate or throughput in millions of samples per second versus

number of FFT tiles for each of the five values of N.

Figure 6. Chart of NPS Experimental Results

Discussion:

• At lower block sizes, 256 and 512, it appears that at some point the cost

setting up the DMA (ilib_dma_start_dma) and processing the wait for

termination (ilib_wait) are dominating the processing time, so that even

though the number of tiles increases, the cost of the DMA overwhelms the

potential benefit of the additional FFT tiles. DMA setup and wait cost is

most likely independent of the size of the data being moved.

0

5

10

15

20

25

30

0 5 10 15 20 25

Sa
m

pl
e

Ra
te

 (M
ill

io
ns

 S
am

p.
/s

ec
.)

M
ill

io
ns

Number of Tiles

FFT Rates versus Number of Tiles - NPS Experimental Results

N=128

N=256

N=512

N=1024

N=2048

 17

• At larger block sizes we see some increase in performance with increasing

number of tiles beyond the 7 or 8 with 256 and 512 size blocks, but in

these cases it appears that eventually we are seeing contention on the

various internal buses. Part of the reason we think that is because of the

variability that we are seeing. This may also be influenced by the

arrangements we used for the tiles. With Figure 3 as a reference, the tiles

are labeled (x,y) where 0 ≤ 𝑥,𝑦 ≤ 6. The source tile was placed at (1,3)

and the sink tile at (1,4). The up to 20 FFT tiles were placed in the

columns starting at (2,0) with the tiles used in a block of height 7 and

width 3, through tile (4,6). We let the library (os) determine which tiles

within a block were used for a particular count of FFT tiles. We did not

experiment by setting up different arrangements of tiles.

Earlier, we discussed the results from the ISI paper [14] that appear to set an

upper bound on the performance of the pipelined multi-tile implementation of the FFTW.

The ISI projected performance of two of the FFT sizes that coincide with sizes that were

used in the NPS experiments compared to the NPS results for the same FFT sizes are

shown in Figure 7.

 18

Figure 7. Projections from ISI paper compared to NPS results.

For N = 256, the NPS experimental results significantly underperform the ISI

projections. We believe this to be caused by the DMA overhead. For N = 2048 and for

low tile numbers, the NPS performance is close to the upper bound, until it reaches the

knee of the NPS curve and then internal bus contention appears to take over.

D. APPLICATION OF RESULTS TO SDR PERFORMANCE
The process of programming the Maestro Development Board (MDB) to

investigate the performance of the multi-tile FFTW was much more difficult than we had

estimated at the outset of the project. Furthermore, a working MDB was only obtained in

September of 2013. Consequently experimental verification of the SDR performance was

not obtained.

Nevertheless, we can make reasonable predictions of the SDR performance from

our FFT experiments.

Referring back to the basic pipeline architecture of Figure 4, we see that in

addition to computing an N-point FFT, each of the p-processing tiles must compute

0

10

20

30

40

50

60

0 5 10 15 20 25

Sa
m

pl
e

Ra
te

 (M
ill

io
ns

 S
am

p.
/s

ec
.)

M
ill

io
ns

Number of Tiles

Sample Rates versus Number of Tiles for 2 FFT Sizes
ISI FFTW Projections & NPS Experiments

N=256, NPS

N=256, ISI

N=2048 NPS

N=2048 ISI

 19

1
2
N
+ values of 2

kX and test each value with respect to a real threshold2. Each tile will

then output via DMA q 16-bit frequency indices and 2q 32-bit floating point complex

frequency real or imaginary parts, where 0 1
2
Nq≤ ≤ − .

The computational requirements of the N-point FFT is 25 logN N FLOPs. The

computational requirements of the magnitude squaring and testing are 3
2
N FLOPs and

2
N integer3 operations. Thus, the computational requirements for each processing tile will

increase from 25 logN N FLOPs to 25 log 2N N N+ , a modest increase indeed.

Consequently, when the number of tiles in Figure 6 exceeds ten (the knee of those

curves) and the performance is limited by DMA performance and bus contention, it is

expected that the throughput for the full SDR implementation will be nearly the same as

for the FFT alone. Furthermore, since the SDR is basically a data compression process,

the output data rate should be much less than N 32-bit words per block, allowing a further

modest increase in throughput.

22 SSiinnccee tthhee ssiiggnnaall bbeeiinngg pprroocceesssseedd iiss rreeaall,, oonnllyy tthhee ppoossiittiivvee ppoorrttiioonn ooff tthhee
ffrreeqquueennccyy ssppeeccttrruumm nneeeedd bbee tteesstteedd aanndd ddoowwnnlliinnkkeedd..

33 SSiinnccee IIEEEEEE ffllooaattiinngg ppooiinntt nnuummbbeerrss aarree nnoorrmmaalliizzeedd,, ccoommppaarriissoonnss ooff ffllooaattiinngg--
ppooiinntt nnuummbbeerrss ccaann bbee ppeerrffoorrmmeedd uussiinngg 3322--bbiitt iinntteeggeerr aarriitthhmmeettiicc..

 20

IV. CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER
STUDY

A. CONCLUSIONS

• A pipeline parallel multi-tile IEEE Single Precision Floating Point version of

the FFTW was coded and tested on a Maestro Development Board with from

1 to 20 parallel tiles computing FFTs with block sizes of 256 through 2048.

• Pipeline throughputs for these FFTs were achieved of up to 25 million 32-bit

samples per second.

• Addition of the rest of the SDR code to each FFT tile should not decrease

performance for number of tiles, 10p > and for 512.N >

• Higher block size operates more efficiently.

• The pipeline architecture was successfully demonstrated.

• Programming a single application to exploit parallelism of a multi-tile

processor like Maestro is very difficult.

o Because the caches are relatively small, main memory access is

relatively expensive and inter-tile communications is not super fast,

one has to take care in explicitly managing memory and inter-tile

communications. The tools to do this are available, to some extent,

but take some understanding. In our case, we are unsure whether the

“main loop” of the FFT algorithm fit into the cache. We would need to

do more evaluation to determine this.

o We depended on the compiler to take advantage of the potential built-

in instruction parallelism. Except in a couple of cases, we were unable

to exploit the very long instruction word parallelism directly ourselves.

o The system provides a set of development tools and libraries. The

current compiler has some problems, especially handling the

optimization of single precision floating-point arithmetic. Although

the libraries are documented and there are tools for evaluating and

optimizing code, understanding when to use which features of the

 21

system takes some experience. In addition, it is unclear how the use of

the various features might interact with each other.

B. RECOMMENDATIONS FOR FUTURE STUDY
The ISI paper [14] and Table 1 suggest that an upper bound on throughput of
62.6 10 p× samples per second might be achieved for each tile computing a 2048-point

FFTW running under the pipeline architecture demonstrated in this study. This would

mean that a 31-tile realization of the full SDR would potentially support a throughput of

80 million samples per second, enabling in-space processing of 32-MHz bandwidth

signals. The following things should be tried to seek to realize that potential

• Verify the effect on throughput of adding the SDR functionality directly to the FFT

tiles. Compare the performance of the alternative of adding a SDR tile in tandem to

each FFT tile via the run_sink.c code.

• Experiment with different mapping of functionality to physical tiles.

• Work with ISI to optimize the NPS-developed code.

We have considered several approaches we could take to possibly optimize the

FFT computations on the MAESTRO board. These include, listed in order of difficulty

to address, but not necessarily the order of expected improvement:

1. Compiling/Coding Optimizations;

2. Dedicated Tiles;

3. Geometric Optimizations;

4. Refactoring the FFT Algorithms.

Below we describe these in more detail.

We think that the most improvement would come from some combination of

Dedicated Tiles and Refactoring the FFT Algorithm.

FFT Algorithm. The only change we made to the delivered FFTW package is to

recompile it for single precision floating point operation. This provided a small

performance improvement. We have not spent any significant time and efforts applying

the techniques outlined in the "Optimization Guide, UG105" [15] document to the FFTW

package or our integration code. We would like to apply the various monitoring tools to

analyze the performance of the FFTW package to see where the bottlenecks are. It would

be interesting to apply the analysis tools to the package, apply the compiler feedback-

 22

based optimizations and add appropriate compiler features to the code. We are currently

using the "ilib" interfaces for inter-tile communications and synchronization. There are

"intrinsic" level compiler macros that directly access hardware level instructions to

accomplish the communications and synchronization functions. These would remove the

ilib function call overhead. It is not clear how much this would save but it is worth

looking at and might provide for tighter (less latency) inter-tile communications.

Dedicated Tiles. We are currently using the delivered version of the Linux

operating system. This version of the OS does not include any configuration of

"dedicated tiles." We would like to configure and compile a new version of the operating

system that includes dedicated tiles to do the FFT computations. We think this may

provide significant performance improvements since the dedicated tiles operate with

much less OS overhead than normal tiles, hence we may see more effective use of both

the processor and cache.

Geometric Optimizations. We have only done a limited number of experiments

on the allocation of our processes to tiles. Our current efforts do not show a significant

increase in overall throughput, samples per second, once the number of tiles doing FFT

processing increases beyond around 14 or so. We are not sure why this is the case, since

our tile-to-tile communications speed measurements indicate that we should be seeing

better performance than that. We think part of the problem is how the assignment of

function to specific tiles is done. The length of the path between two communicating

tiles increases latency and there is a potential for collisions on a network path where

several tiles attempt to communicate over the same path simultaneously. Since we

potentially know all the communications among processes, we should be able to find

optimal, or at least better, arrangements of processes to tiles. If we were to build a new

OS version, this could tie into where we allocate the dedicated tiles.

Refactoring The FFT Algorithm. The FFTW implementation of the FFT

algorithm is configured to compute an FFT block on a single tile. We achieve our

"throughput" by providing multiple tiles, each computing a full FFT block. Our current

measurements indicate that we could come close to doubling the throughput if we could

speed up the FFT computations. In that case the limiting factor would be the inter-tile

communications. One way of achieving an increase in FFT processing speed is to

 23

refactor the algorithm to take advantage of the MIPS/MAESTRO capabilities. One

approach is to "role our own" FFT implementation that still uses one tile/block but does

not include any of the overhead needed to support the generality of the FFTW

implementation. It can be tailored with appropriate assembly code to take advantage of

the single precision floating point operations needed. This code could be tailored for

exactly the block size we use and integrated into the inter-tile communications

infrastructure. We could apply the various analysis and optimization techniques directly

to this code. It is unclear, without further analysis, whether the implementation for, say, a

1K block size would fit comfortably on a single tile and cache. A second approach might

be to attempt to factor the algorithm to run on multiple tiles to take advantage of the

"butterfly" computations. This might increase the latency slightly but might make it

easier to ensure that the computations take place entirely within the cache.

 24

APPENDIX A

This appendix contains the source code for the various tile processes that were

used in the experiment. These files are:

1. Makefile: Contains instructions for building the 4 programs: startdma or
start3dma, run_sender, run_receiver and run_sink.

2. simpledma.h: "Include file" that contains definitions of various
macros and data types used throughout the programs.

3. startdma: is the main driver for FFT testing. From command line arguments it
determines how many FFT tiles to set up (run_receiver), assigns the tiles to each
of the programs to be run and exits. Typical command format is:

startdma blocksize iterations numReceivers

where blocksize is the number of samples in one FFT block, one of (256,
512,1024, 2048)

iterations is the number of blocks each "receiver" will process,
typically a value above 100000 will give relative consistent results,
and

numReceivers is the number of tiles used to process FFTs, 1<=
numReceivers <= 20

4. run_sender: is the program that generates data to be processed, it sends a dma
message to a run_receiver to tell it that it has a buffer to process.

5. run_receiver: DMAs blocks from run_sender, FFTs the blocks, and signals
run_sink that it has a block to process.

6. run_sink: DMAs blocks from run_receiver for future processing (not done
here)

7. start3dma: is a simplified version of startdma that has only one run_receiver
tile. It places run_sender on tile (1,3), run_receiver on tile (2,3) and
run_sink on tile (3,3) This was constructed for testing.

1. makefile
/* Written by George W. Dinolt, Naval Postgraduate School, Monterey, CA
 Last Change Rev: 120, Last Changed Date: Fri, 22 Nov. 2013 */

ifndef TILERA_ROOT
$(error The 'TILERA_ROOT' environment variable is not set.)
endif

BIN = $(TILERA_ROOT)/bin/
FFTW_ROOT = $(TILERA_ROOT)/src/tools/opera-fftw
LIB_ROOT = $(TILERA_ROOT)/src/tools/opera-fftw/lib

CONVERTFEEDBACK = ${BIN}/tile-convert-feedback

CC = $(BIN)tile-cc
CFLAGS = -O2

 25

LDFLAGS = -static -Os -L$(TILERA_ROOT)/tile/lib -
L$(TILERA_ROOT)/tile/usr/lib -L$(LIB_ROOT) -lfftw3f -lilib -ltmc
-lm

TARGETS = startdma startudma start3dma run_sender run_receiver
run_sink

all: ${TARGETS}

%:%.o
 ${CC} $< -o $@ ${LDFLAGS}

run_sender.o: run_sender.c simpledma.h

run_receiver.o: run_receiver.c simpledma.h

run_sink.o: run_sink.c simpledma.h

startdma.o: startdma.c simpledma.h

startudma.o: startudma.c simpledma.h

start3dma.o: start3dma.c simpledma.h

clean:
 rm -rf *.o ${TARGETS}

2. Include File – simpledma.h
/* Written by George W. Dinolt, Naval Postgraduate School, Monterey, CA

Last Change Rev: 120, Last Changed Date: Fri, 22 Nov. 2013 */

#ifndef __SIMPLEDMA
#define __SIMPLEDMA

#include <ilib.h>
#include <stdio.h>

#include <tmc/cmem.h>
#include <arch/cycle.h>
#include <sys/time.h>
#include <fftw3.h>

//sending buffers between sender and receivers
#define MESSAGE_TAG 17
#define MESSAGE_SENT_TAG 18

//sending buffers between receivers and sink
#define MESSAGE_3_TAG 19
#define MESSAGE_3_SENT_TAG 20

// sending last receipt
#define MESSAGE_LAST_RECEIVED 21

 26

// Ranks of various processes
#define SEND_RANK 0
#define SINK_RANK 1
#define FIRST_RECEIVER 2

// Size of shared memory objecta.
// blocksize is an input parameter

#define BUFFERSIZE(blocksize) (size_t)(blocksize * sizeof(float))

/*
 * Macros to "simplify" message and dma code by assuming
 *
 * ILIB_GROUP_SIBLINGS is always the group
 *
 * automagically converts variables into pointers
 * and calculates sizes where necessary
 *
 * assumes that "status" is defined where necessary
 */

//ILIB msg send
//Assume default group
#define SEND_MESSAGE(receiver, tag, buffer) \
 ilib_msg_send(ILIB_GROUP_SIBLINGS, \
 receiver, \
 tag, \
 &buffer, \
 sizeof(buffer))

// ILIB msg receive
// assume status out and error message
#define RECEIVE_MESSAGE(sender, tag, buffer)\
 ilib_msg_receive(ILIB_GROUP_SIBLINGS, \
 sender, \
 tag, \
 &buffer, \
 sizeof(buffer), \
 &status)

#define BROADCAST_MESSAGE(source, buffer)\
 ilib_msg_broadcast(ILIB_GROUP_SIBLINGS,\
 source, \
 &buffer, \
 sizeof(buffer), \
 &status)

#define DMA_START(destination_ptr, source_ptr, nbytes, request)

 \
 ilib_mem_start_dma(destination_ptr, \
 source_ptr, \
 nbytes, \
 &request)

typedef struct params {
 int blocksize;

 27

 int buffersize;
 int iters;
 float *buffer1;
 float *buffer2;
 int nreceivers;
} params_t;

typedef struct args {
 int blocksize;
 int iters;
 int nreceivers;
} args_t;

#endif

3. startdma.c
/* Written by George W. Dinolt, Naval Postgraduate School, Monterey, CA

Last Change Rev: 120, Last Changed Date: Fri, 22 Nov. 2013 */

/*

 USAGE:

 ./startdma blocksize iterations numReceivers

 where:
 blocksize: the sample size of the fft block to be computed,
 one of 2^k for k in [5-11]

 iterations: the number of ffts computed by each receiver,
 at least one

 numReceivers: the number of receivers being run concurrently,
 1<= numReceivers<=20

 OUTPUT is generated by the run_sender program and is sent to
 stdout. It is of the form:

 run_sender: iters=100000, nreceivers=1, BUFFERSIZE=2048
 run_sender: cycles = 4953052451
 run_sender: Cycles per block transfer = 49530
 run_sender: Transfer Rate = 3617970 samples/sec

 where:
 iters is the number of FFTs each receiver did

 nreceivers is the number of receivers (between 1 andd 20)

 BUFFERSIZE is the size of the buffer needed to hold one block of
 FFT data

 cycles is the difference in the number of cycles reported at the
 receipt of the last ack from run_sink and the number at the
 beginning of the first send of an FFT as collected by
 get_cycle_count

 28

 cycles/block transfer = cycles / (iters * nreceiveers)

 samples/sec = (iters * nreceivers * (BUFFERSIZE / 4) /
 (cycles * cyclesPerSecond)

 which reduces to:

 (iters * nreceivers * BUFFERSIZE * cyclesPerSecond)/(4 *
cycles)

 This provides a consistent measure of sample rate for each
 blocksize and number of recievers.

 Driver Program: spawns:

 run_sender: Program that generates packets for use

 run_receiver(s): Each receiver copies source blocks from sender and
 produces fft. There can be up to 20 receivers.

 run_sink: Program to receive all the fftw data. At reciept of last
 block it signals sender that it is done.

 See simpledma.h for descriptions of the macros:

 SEND_MESSAGE
 RECEIVE MESSAGE

 BROADCAST_MESSAGE

*/

#include "simpledma.h"

#define USAGE "USAGE: startdma blocksize iterations numReceivers"
#define UBLOCK(b) b == 32 || b == 64 || b == 128 || b == 256 ||\
 b == 512 || b == 1024 || b == 2048

args_t *parseArgs(int argc, char *argv[])
{
 args_t * a = (args_t *)tmc_cmem_memalign((size_t)64, sizeof(args_t));

 if (argc != 4)
 {
 ilib_die("startdma: wrong number of args, got %d\n\t%s",
 argc, USAGE);
 }
 a->blocksize = atoi(argv[1]);
 if (! (UBLOCK(a->blocksize)))
 {
 ilib_die("startdma: blocksize=%d not power of 2\n\t%s", a-
>blocksize, USAGE);
 }
 a->iters = atoi(argv[2]);
 if (a->iters <= 0)
 {

 29

 ilib_die("startdma: iterations=%s must be positive\n%s",
 argv[2], USAGE);
 }
 a->nreceivers = atoi(argv[3]);
 if (a->nreceivers <= 0 || a->nreceivers > 20)
 {
 ilib_die("startdma: number of receivers = %s must b in range
1<=nr<20\n\t%s",
 argv[3], USAGE);
 }
 return a;
}

int main(int argc, char *argv[])
{
 ilib_init();
 args_t *a = parseArgs(argc, argv);

 const int nreceivers = a->nreceivers;

 ilibProcParam pparams[3]; // send, sink, receiver

 memset(pparams, 0, sizeof(pparams));

 /*
 * run_sender at tile 1,2
 * run_sink at tile 1,4
 * run_receiver at tiles [2-4],[0-6]

 */

 pparams[0].num_procs = 1;
 pparams[0].binary_name = "run_sender";
 pparams[0].init_block = a;
 pparams[0].init_size = sizeof(args_t);
 pparams[0].tiles.x = 1;
 pparams[0].tiles.y = 3;
 pparams[0].tiles.width = 1;
 pparams[0].tiles.height = 1;
 pparams[1].num_procs = 1;
 pparams[1].binary_name = "run_sink";
 pparams[1].tiles.x = 1;
 pparams[1].tiles.y = 4;
 pparams[1].tiles.width = 1;
 pparams[1].tiles.height = 1;
 pparams[2].num_procs = nreceivers;
 pparams[2].binary_name = "run_receiver";
 pparams[2].tiles.x = 2;
 pparams[2].tiles.y = 0;
 pparams[2].tiles.width = 3;
 pparams[2].tiles.height = 7;
 ilibGroup spawned_procs;
 if (ilib_proc_spawn(3, pparams, &spawned_procs) != ILIB_SUCCESS)
 {
 ilib_die("Failed to spawn.");
 }
 ilib_finish();

 30

 return 0;
}

4. run_sender.c
/* Written by George W. Dinolt, Naval Postgraduate School, Monterey, CA
 Last Change Rev: 120, Last Changed Date: Fri, 22 Nov. 2013 */

/*
 Program to generate data for fftw speed testing. It is
 expected that this program will be started via the startdma program
and assigned to specified tile.

 See simpledma.h for descriptions of the macros:

 SEND_MESSAGE
 RECEIVE MESSAGE
 DMA_START
 BROADCAST_MESSAGE

 General flow is,

 Get Parameters from command line argument set up in startdma using
 "ilib_prog_get_init_block"

 Initialize local buffers and local "Pointers"

 Initialize each block to be used with (single precision) floating
 point numbers

 set up and BROADCAST paramters for run_receiver and run_sink
processes

 get current cycle_count

 LOOP: (number of iterations)

 LOOP: over all run_receivers:
 SEND_MESSAGE next message to specified run_receiver that
 message is ready for DMA

 wait for last message from run_sink
 get current cyclce_count

 print out results.

define DEBUG for debugging

*/

#include "simpledma.h"

//#define DEBUG

 31

#ifdef DEBUG
static void run_sender(args_t *a, FILE *rserr)

#else
static void run_sender(args_t *a)
#endif
{
 int i;
 int slot;
 int k;
 long long start_ctr, end_ctr, cycles;

 const int blocksize = a->blocksize;
 const int iters = a->iters;
 const int nreceivers = a->nreceivers;

#ifdef DEBUG
 fprintf(rserr, "Running sender with blocksize %d\n",blocksize);
 fflush(rserr);
#endif

 // Allocate a chunk of shared memory and fill it up.

 float *buffer1 = (float *) tmc_cmem_memalign((size_t)64,
BUFFERSIZE(blocksize));
 if (buffer1 == NULL)
 {
 ilib_die("run_sender: Unable to allocate sender buffer1 memory");
 }

 float *buffer2 = (float *) tmc_cmem_memalign((size_t)64,
BUFFERSIZE(blocksize));
 if (buffer1 == NULL)
 {
 ilib_die("run_sender: Unable to allocate sender buffer2 memory");
 }

 for (i = 0; i < blocksize; i++)
 {
 buffer1[i] = (float) i;
 buffer2[i] = (float) i;
 }

 float *blocks[2];
 blocks[0] = buffer1;
 blocks[1] = buffer2; // this should be "blocksize" floats

 params_t * p = (params_t *)tmc_cmem_memalign((size_t) 64,
sizeof(params_t));

 p->blocksize = blocksize;
 p->buffersize=BUFFERSIZE(blocksize);
 p->iters = iters;

 32

 p->buffer1 = buffer1;
 p->buffer2 = buffer2;
 p->nreceivers = nreceivers;
 // Before allowing the receive to access the shared memory, we must
 // guarantee that all of the writes from the loop above have
 // completed. Without this call, the receiving process might read a
 // stale value from the shared_memory array.

 // Send the memory address.

 ilibStatus status;
 BROADCAST_MESSAGE(SEND_RANK, p);
 if (status.error != ILIB_SUCCESS)
 {
 ilib_die("run_sender: unable to broadcast param message");
 }

#ifdef DEBUG
 fprintf(rserr, "run_sender: broadcast parameters address, %x\n", p);
 fflush(rserr);
#endif

 start_ctr = get_cycle_count();
 for (i = 0; i< iters; i++)
 {
 slot = i % 2;
 blocks[slot][0] = i;
 blocks[slot][blocksize-1] = i;
 ilib_mem_fence();
 for (k = 0; k < nreceivers; k++)
 {
 SEND_MESSAGE(FIRST_RECEIVER + k, MESSAGE_SENT_TAG,i);

#ifdef DEBUG
 fprintf(rserr, "run_sender: send buffer %d to receiver %d
ready\n", i, k);
 fflush(rserr);
#endif
 }
 }

 long long rcv_end_ctr;
 RECEIVE_MESSAGE(SINK_RANK, MESSAGE_LAST_RECEIVED, rcv_end_ctr);

 end_ctr = get_cycle_count();
 cycles = end_ctr - start_ctr;
 printf("run_sender: iters=%d, nreceivers=%d, BUFFERSIZE=%d\n",
 p->iters, nreceivers, BUFFERSIZE(blocksize));
 printf("run_sender: cycles = %lld\n", cycles);
 long long cyclesPerBlock = cycles/(p->iters * nreceivers);
 printf("run_sender: Cycles per block transfer = %lld\n",
cyclesPerBlock);

 // do arithmetic this way to ensure no overflow

 // This is the number taken from
 // cat < /proc/cpuinfo

 33

 // Unclear whether this is "real" or not
 const unsigned long long cyclesPerSecond = 350000000L;

 // divide by 4 to get samples (each sample is a real single precision
float
 const unsigned long long transferRate =
 ((unsigned long long)(p->iters) *
 (unsigned long long)nreceivers *
 (unsigned long long)BUFFERSIZE(blocksize) * cyclesPerSecond)/
 (unsigned long long)cycles/4;

 printf("run_sender: Transfer Rate = %llu samples/sec\n",
 transferRate);

}

int main(void)
{
 ilib_init();
 int my_rank = ilib_group_rank(ILIB_GROUP_SIBLINGS);
 if (my_rank != SEND_RANK)
 {
 ilib_die("send_sender: rank = %d, wrong.", my_rank);
 }
 args_t *a;
 size_t a_size = 0;
 a = ilib_proc_get_init_block(&a_size);

#ifdef DEBUG
 FILE *rserr= fopen("run_sender_errors", "w");
 fprintf(rserr, "run_sender: Read a, got blocksize=%d, iters=%d,
nreceivers=%d\n",
 a->blocksize, a->iters, a->nreceivers);
 fflush(rserr);
#endif

 if (a_size != sizeof(args_t))
 {
 ilib_die("run_sender: size of args is wrong");
 }
#ifdef DEBUG
 run_sender(a,rserr);
#else
 run_sender(a);
#endif

 ilib_finish();
 return 0;
}

5. run_receiver.c
/* Written by George W. Dinolt, Naval Postgraduate School, Monterey, CA
 Last Change Rev: 120, Last Changed Date: Fri, 22 Nov. 2013 */

/*

 34

 program to compute FFTW's reveived via DMA from run_sender. It is
 expected that this program will be started via the startdma
 program. Multiple copies of this program may be started. All copies
 dma blocks to process from the same source and make available fftw
 processed blocks for the single "sink" to dma blocks for post
 processing.

 See simpledma.h for descriptions of the macros:

 SEND_MESSAGE
 RECEIVE MESSAGE
 DMA_START
 BROADCAST_MESSAGE

 General flow is,

 Get Parameters from run_sender (BROADCAST_MESSAGE)

 Initialize local buffers and local "Pointers"

 Tell run_sink where the local buffer to copy from is

 get first received message from run_sender
 start DMA of buffer from run_sender
 wait for DMA to finish
 LOOP:
 RECEIVE_MESSAGE from run_sender that message is ready
 start DMA message to local memory
 fftw_previous buffer (while DMA is happening)
 SEND sink message that buffer ready for DMA
 wait for started DMA to finish

DEBUG is for debugging
MEMCPY is for testing message passing without doing FFTW
PRINT_RECEIVER_OUT is for further debugging help.

*/

//#define MEMCPY

//#define DEBUG

//#define PRINT_RECEIVER_OUT
//#define MEMCPY

#include "simpledma.h"

/*
 fftw requires a "plan". The plan depends on the "processor" and
some
 tests that fftw makes to determine the "best" approaches. Plans
 can be saved, partially, in "wisdom files". If such a file is
 available then fftw can be instructed to use it. If the Wisdeom
 file is not available, then fftw will generate a plan. This takes
 some time, measured in seconds.

 Note that we are assuming that all the cores that will be doing

 35

 fftw can use the same "wisdeom" file and same plan. I have *not*
 tested that this is, in fact, the case.

 Indications are that buffer movement is a bigger problem.
*/

#ifndef MEMCPY
#define WISFILENAME 100
fftwf_plan setupWisdom(float *in, float *out, int blocksize)
{
 char wis[WISFILENAME];
 snprintf(wis,WISFILENAME, "Wisdomf_%d", blocksize);
 FILE *wfd = fopen(wis, "r");
 if (wfd != NULL)
 {
 fftwf_import_wisdom_from_file(wfd);
 }

 fftwf_plan p = fftwf_plan_dft_r2c_1d(blocksize, in,
 (fftwf_complex *)out, FFTW_EXHAUSTIVE);

 if (wfd == NULL)
 {
 wfd = fopen(wis, "w");
 fftwf_export_wisdom_to_file(wfd);
 fclose(wfd);
 }

 return p;
}

#pragma frequency_hint INIT setupWisdom
#endif
void run_receiver(void)
{
 ilibStatus status;
 float *sink_blocks[2];

 int my_rank = ilib_group_rank(ILIB_GROUP_SIBLINGS);

 params_t *p;

#ifdef DEBUG
 fprintf(stderr, "run_receiver: rank=%d, waiting for param list\n",
my_rank);
 fflush(stderr);
#endif

 // Receive the params object address

 BROADCAST_MESSAGE(SEND_RANK, p);

 if (status.error != ILIB_SUCCESS ||
 status.size != sizeof(p))
 {
 ilib_die("run_receiver: Failed to receive params from sender");
 }

 36

#ifdef DEBUG
 fprintf(stderr, "run_receiver: got params pointer %x\n", p);
 fflush(stderr);
#endif

 float *buffer1 = p->buffer1; /* source buffer address */
 float *buffer2 = p->buffer2; /* source buffer address */
 const int blocksize = p->blocksize;
 const int iters = p->iters;
 float local_buf[2][blocksize]; /* destinatin buffers */
 float *src_blocks[2]; /* these are set to point to the source buffers
*/
 ilibRequest requests[2];

#ifdef DEBUG
 fprintf(stderr, "run_receiver: rank=%d, got buffer length of %d\n",
 my_rank, blocksize);
 fflush(stderr);
#endif

 // buffersize is size of 1 buffer (1024*sizeof(float), sink is double
buffered

 float *sink_buffer = (float *)tmc_cmem_memalign((size_t) 64, 2 * p-
>buffersize);
 if (sink_buffer == NULL)
 {
 ilib_die("Unable to allocate transfer buffer\n");
 }

 // Tell sink about sink buffer

#ifdef DEBUG
 fprintf(stderr, "run_receiver: rank = %d, sending sink_buffer
address=%x to sink\n",
 my_rank, sink_buffer); /* careful here */
 fflush(stderr);
#endif

 SEND_MESSAGE(SINK_RANK, MESSAGE_3_TAG, sink_buffer);

 // set address of src blocks, can only do this after buffer address
 // has been assigned.
 src_blocks[0] = buffer1;
 src_blocks[1] = buffer2;

 sink_blocks[0] = sink_buffer;
 sink_blocks[1] = sink_buffer + blocksize;

 int i;
 int j;
 int slot;
 int prevSlot;

#ifdef PRINT_RECEIVER_OUT
 long long start_ctr, end_ctr, cycles;

 37

 start_ctr = get_cycle_count();
#endif

 slot = 0;

#ifdef DEBUG
 fprintf(stderr, "run_receiver: rank %d, waiting for first (0th)
message for sender\n",
 my_rank);
 fflush(stderr);
#endif

#ifndef MEMCPY
 fftwf_plan plan = setupWisdom(buffer1, sink_buffer, blocksize);
#endif

 RECEIVE_MESSAGE(SEND_RANK, MESSAGE_SENT_TAG, j);

 if (status.error != ILIB_SUCCESS ||
 status.size != sizeof(j))
 {
 ilib_die("run_receiver: Failed ilib_msg_receive of buffer
ready");
 }

 if (j != 0)
 {
 ilib_die("Receiver got first message out of sequence\n");
 }

#ifdef DEBUG
 fprintf(stderr, "run_receiver: rank %d, Starting first dma read
DMA\n",
 my_rank);
 fflush(stderr);
#endif

 if (DMA_START(local_buf[slot], src_blocks[slot],
BUFFERSIZE(blocksize), requests[slot])
 < 0)
 {
 ilib_die("Failed 1st DMA.");
 }

 if (ilib_wait(&requests[slot], &status) < 0)
 {
 ilib_die("run_receiver: failed on first message receive");
 }

 int prev;
 i = 0;
 while (i < iters - 1)
 {

#ifdef DEBUG
 fprintf(stderr, "run_receiver: rank=%d, expect %d,
src__blocks[slot] = %f\n,",

 38

 my_rank, i, src_blocks[slot][0]);
 fflush(stderr);
#endif

 prev = i;
 prevSlot = slot;

 i++;
 slot = i % 2;

 RECEIVE_MESSAGE(SEND_RANK, MESSAGE_SENT_TAG, j);

 if (status.error != ILIB_SUCCESS ||
 status.size != sizeof(j))
 {
 ilib_die("Failed ilib_msg_receive of buffer ready");
 }

 if (j != i)
 {
 ilib_die("Receiver got message %d, expected message %d\n", j,
i);
 }

#ifdef DEBUG
 fprintf(stderr, "run_receiver: rank=%d, starting DMA of message
%d\n",
 my_rank, i);
 fflush(stderr);
#endif

 if (DMA_START(local_buf[slot], src_blocks[slot],
BUFFERSIZE(blocksize), requests[slot])
 < 0)
 {
 ilib_die("Failed 1st DMA.");
 }

#ifdef MEMCPY
 memcpy(sink_blocks[prevSlot], src_blocks[prevSlot],
BUFFERSIZE(blocksize));
#else
 fftwf_execute_dft_r2c(plan, src_blocks[prevSlot], (fftwf_complex
*)sink_blocks[prevSlot]);
#endif

 SEND_MESSAGE(SINK_RANK, MESSAGE_3_SENT_TAG, prev);

#ifdef DEBUG
 fprintf(stderr, "run_receiver: rank = %d, sink_block[0] = %f\n",
 my_rank, sink_blocks[prevSlot][0]);
 fflush(stderr);
#endif

 if (ilib_wait(&requests[slot], &status) < 0)
 {

 39

 ilib_die("Failed from ilib_wait().");
 }
 }
 i = i--;

#ifdef DEBUG
 fprintf(stderr, "run_received: rank=%d, expect %d, src__blocks[0] =
%f\n,",
 my_rank, i, src_blocks[i % 2][0]);
 fflush(stderr);
#endif

#ifdef MEMCPY
 memcpy(sink_blocks[i %2], src_blocks[i %2], BUFFERSIZE(blocksize));
#else
 fftwf_execute_dft_r2c(plan, src_blocks[i%2], (fftwf_complex
*)sink_blocks[i%2]);
#endif

#ifdef DEBUG
 fprintf(stderr, "run_receiver: rank=%d, expect %d, src__blocks[slot]
= %f\n,",
 my_rank, i, src_blocks[slot][0]);
 fflush(stderr);

 fprintf(stderr, "run_receiver: rank=%d, sending msg %d ready\n",
my_rank, i);
 fflush(stderr);
#endif

 SEND_MESSAGE(SINK_RANK, MESSAGE_3_SENT_TAG, i);

 if (status.error != ILIB_SUCCESS)
 {
 ilib_die("run_receiver: fail on end of run on receiver %d\n",
my_rank);
 }

#ifdef PRINT_RECEIVER_OUT
 end_ctr = get_cycle_count();
 cycles = end_ctr - start_ctr;
 printf("run_receiver: rank=%d, Block size is %d bytes\n", my_rank,
BUFFERSIZE(blocksize));
 printf("run_receiver: rank=%d, last block expect %d : block[0] = %f,
block[%d] = %f\n",
 my_rank, i, local_buf[(i) % 2][0], i, local_buf[(i) %
2][blocksize-1]);
 long long blocksPerSec = 400000000L / (cycles/iters);
 printf("run_receiver: rank=%d, Cycles per transfer = %lld\n",
my_rank, cycles/iters);
 printf("run_receiver: rank=%d, Transfer Rate = %lld bytes/sec\n",
 my_rank, blocksPerSec * BUFFERSIZE(blocksize));
#endif
}

int main(void)
{

 40

 ilib_init();
 const int my_rank = ilib_group_rank(ILIB_GROUP_SIBLINGS);

#ifdef DEBUG
 FILE *rsinkerr = fopen("run_sink_errors", "w");
 fprintf(stderr, "run_receiver: rank=%d, waiting for param list\n",
my_rank);
 fflush(stderr);
#endif

 if (my_rank == SINK_RANK || my_rank == SEND_RANK)
 {
 ilib_die("run_receiver: got rank = %d, wrong for receiver\n",
my_rank);
 }
 run_receiver();

#ifdef MEMCPY
 printf("Run Receiver used MEMCPY\n");
#else
 // printf("Run Receiver used fftw\n");
#endif

 ilib_finish();
 return 0;
}

6. run_sink.c
/* Written by George W. Dinolt, Naval Postgraduate School, Monterey, CA
 Last Change Rev: 120, Last Changed Date: Fri, 22 Nov. 2013 */

/*
 run_sink: Program to receive all the computed fft's.

 The Flow is:

 RECEIVE BROADCAST message from run_sender with paramters (buffer
size).

 Setup local buffers

 receiver buffer addresses from run_senders buffers

 LOOP (iterations):
 for each receiver, receiver message that message is ready
 dma message from receiver

 SEND_MESSAGE that we are done.

 Note that we are not trying to do multiple dma's symultaneously.
 since we are not doing processing here. This would probably need to
 be fixed.

 41

 See simpledma.h for descriptions of the macros:

 SEND_MESSAGE
 RECEIVE MESSAGE
 DMA_START
 BROADCAST_MESSAGE

define PRINT_SINK_OUT to test output
define DEBUG for debugging

*/

#include "simpledma.h"

//#define PRINT_SINK_OUT
//#define DEBUG

void run_sink(
#ifndef DEBUG
 void
#else
 FILE *rsinkerr
#endif
)
{
 int i;
 int j;
 int k;
 int slot;
 long long end_ctr;

#ifdef PRINT_SINK_OUT
 long long start_ctr, cycles;
#endif

 int my_rank = ilib_group_rank(ILIB_GROUP_SIBLINGS);

 if (my_rank != SINK_RANK)
 {
 ilib_die("Got rank %d != SINK_RANK = %d\n", my_rank, SINK_RANK);
 }
 params_t *p;

#ifdef DEBUG
 fprintf(rsinkerr, "run_sink: rank=%d, waiting for param list\n",
my_rank);
 fflush(rsinkerr);
#endif

 ilibStatus status;
 // Receive paramaters from sender via broadcast
 BROADCAST_MESSAGE(SEND_RANK, p);
 if (status.error != ILIB_SUCCESS ||
 status.size != sizeof(p))
 {
 ilib_die("Failed receive of param broadcast");
 }

 42

#ifdef DEBUG
 fprintf(rsinkerr, "run_sink: got parameter address %x\n", p);
 fflush(rsinkerr);
#endif

 const int blocksize = p->blocksize;
 const int iters = p->iters;
 const int nreceivers = p->nreceivers;

 float *buffer; /* source buffer address */
 float local_buf[2][blocksize]; /* destinatin buffers */
 float *src_blocks[nreceivers][2]; /* these are set to point to the
source buffers */
 ilibRequest requests[2];

 for (k = 0; k < nreceivers; k++)
 {

#ifdef DEBUG
 fprintf(rsinkerr,"run_sink: waiting buffer address from receiver
%d\n", k);
 fflush(rsinkerr);
#endif
 RECEIVE_MESSAGE(k+FIRST_RECEIVER, MESSAGE_3_TAG, buffer);
 if (status.error != ILIB_SUCCESS ||
 status.size != sizeof(float))
 {
 ilib_die("run_sink: Failed to receive buffer addr from receiver
%d", k);
 }

#ifdef DEBUG
 fprintf(rsinkerr,"run_sink: GOT buffer address from receiver
%d\n", k);
 fflush(rsinkerr);
#endif

 src_blocks[k][0] = buffer;
 src_blocks[k][1] = buffer + blocksize;

#ifdef DEBUG
 fprintf(rsinkerr, "run_sink: SET source blocsk address for
receiver %d\n", k);
 fflush(rsinkerr);
#endif

 }

#ifdef DEBUG
 fprintf(rsinkerr, "run_sink: set buffers ok\n");
 fflush(rsinkerr);
#endif

#ifdef PRINT_SINK_OUT
 start_ctr = get_cycle_count();
#endif

 43

 for (i = 0; i < iters; i++)
 {
 slot = i % 2;
 for (k = 0; k < nreceivers; k++)
 {
#ifdef DEBUG
 fprintf(rsinkerr, "run_sink: awating %d from receiver %d\n",
 i, k);
 fflush(rsinkerr);
#endif
 RECEIVE_MESSAGE(k+FIRST_RECEIVER, MESSAGE_3_SENT_TAG,j);
 if (status.error != ILIB_SUCCESS ||
 status.size != sizeof(j))
 {
 ilib_die("run_sink: Failed ilib_msg_receive of buffer ready
from receiver %d",
 k);
 }

 if (j != i)
 {
 ilib_die("Sink got message %d from receiver %d, expected
message %d\n",
 j, k, i);
 }

 if (DMA_START(local_buf[slot], src_blocks[k][slot],
 BUFFERSIZE(blocksize), requests[slot]) < 0)
 {
 ilib_die("run_sink, Failed 1st DMA from receiver %d.", k);
 }
 if (ilib_wait(&requests[slot], &status) < 0)
 {
 ilib_die("Failed from ilib_wait().");
 }
#ifdef DEBUG
 fprintf(rsinkerr, "run_sink: Received buffer %d from receiver
%d, block[0] = %f\n",
 j, k, src_blocks[k][slot][0]);
 fflush(rsinkerr);
#endif
 }
 }

 end_ctr = get_cycle_count();
 SEND_MESSAGE(SEND_RANK, MESSAGE_LAST_RECEIVED, end_ctr);

#ifdef PRINT_SINK_OUT
 cycles = end_ctr - start_ctr;
 printf("Sink Block size is %d bytes\n", blocksize * sizeof(float));
 for (k = 0; k < nreceivers; k++)
 {
 printf("run_sink, receiver %d, expected %d : block[0] = %f,
block[%d] = %f\n",
 k, (i-1), local_buf[slot][0], i-1,
local_buf[slot][blocksize-1]);

 44

 }
 printf("run_sink: iters=%d, nreceivers=%d, BUFFERSIZE=%d\n",
 iters, nreceivers, BUFFERSIZE(blocksize));
 printf("run_sink: cycles = %lld\n", cycles);
 long long cyclesPerBlock = cycles/(iters * nreceivers);
 printf("run_sink: Cycles per transfer = %lld\n", cyclesPerBlock);
 printf("Sink Transfer Rate = %lld bytes/sec\n",
 ((long long)iters * (long long)nreceivers *
 (long long)BUFFERSIZE(blocksize) * 400000000L)/cycles);
#endif
}

int main(void)
{
 ilib_init();
 const int my_rank = ilib_group_rank(ILIB_GROUP_SIBLINGS);

#ifdef DEBUG
 FILE *rsinkerr = fopen("run_sink_errors", "w");
 fprintf(rsinkerr, "run_sink: starting process with rank %d\n",
 my_rank);
 fflush(rsinkerr);
#endif

 if (my_rank != SINK_RANK)
 {
 ilib_die("run_sink: got rank = %d, wrong for sink\n", my_rank);
 }
 run_sink(
#ifdef DEBUG
 rsinkerr
#endif
);

 ilib_finish();
 return 0;
}

7. start3dma.c
/* Written by George W. Dinolt, Naval Postgraduate School, Monterey, CA
 Last Change Rev: 120, Last Changed Date: Fri, 22 Nov. 2013 */

#include "simpledma.h"

#define USAGE "USAGE: start3dma blocksize iterations"
#define UBLOCK(b) b == 32 || b == 64 || b == 128 || b == 256 ||\
 b == 512 || b == 1024 || b == 2048 || 4096

args_t *parseArgs(int argc, char *argv[])
{
 args_t * a = (args_t *)tmc_cmem_memalign((size_t)64, sizeof(args_t));

 if (argc != 3)
 {

 45

 ilib_die("simple3dma: wrong number of args, got %d\n\t%s",
 argc, USAGE);
 }
 a->blocksize = atoi(argv[1]);
 if (! (UBLOCK(a->blocksize)))
 {
 ilib_die("simple3dma: blocksize=%d not power of 2\n\t%s", a-
>blocksize, USAGE);
 }
 a->iters = atoi(argv[2]);
 if (a->iters <= 0)
 {
 ilib_die("start3dma: terations=%s must be positive\n%s",
 argv[2], USAGE);
 }
 a->nreceivers = 1; // fixed size
 return a;
}

int main(int argc, char *argv[])
{
 ilib_init();
 args_t *a = parseArgs(argc, argv);

 ilibProcParam pparams[3]; // send, sink, receiver

 memset(pparams, 0, sizeof(pparams));

 pparams[0].num_procs = 1;
 pparams[0].binary_name = "run_sender";
 pparams[0].init_block = a;
 pparams[0].init_size = sizeof(args_t);
 pparams[0].tiles.x = 1;
 pparams[0].tiles.y = 3;
 pparams[0].tiles.width = 1;
 pparams[0].tiles.height = 1;
 pparams[1].num_procs = 1;
 pparams[1].binary_name = "run_sink";
 pparams[1].tiles.x = 3;
 pparams[1].tiles.y = 3;
 pparams[1].tiles.width = 1;
 pparams[1].tiles.height = 1;
 pparams[2].num_procs = 1;
 pparams[2].binary_name = "run_receiver";
 pparams[2].tiles.x = 2;
 pparams[2].tiles.y = 3;
 pparams[2].tiles.width = 1;
 pparams[2].tiles.height = 1;
 ilibGroup spawned_procs;
 if (ilib_proc_spawn(3, pparams, &spawned_procs) != ILIB_SUCCESS)
 {
 ilib_die("Failed to spawn.");
 }
 ilib_finish();
 return 0;

}

 46

APPENDIX B.

Data from the experiments is tabulated in the following text files.

The format for the data is illustrated below:

nreceivers is the number of parallel FFT tiles, p.

cycles is the number of cycles, (),C N p .

Transfer Rate is the net sample rate of the pipeline FP FFT.

1. Data for N = 128
run_sender: iters=100000, nreceivers=1, BUFFERSIZE=512
run_sender: cycles = 2035656968
run_sender: Cycles per block transfer = 20356
run_sender: Transfer Rate = 2200763 samples/sec

run_sender: iters=100000, nreceivers=2, BUFFERSIZE=512
run_sender: cycles = 2199992035
run_sender: Cycles per block transfer = 10999
run_sender: Transfer Rate = 4072742 samples/sec

run_sender: iters=100000, nreceivers=3, BUFFERSIZE=512
run_sender: cycles = 2385886892
run_sender: Cycles per block transfer = 7952
run_sender: Transfer Rate = 5633125 samples/sec

run_sender: iters=100000, nreceivers=4, BUFFERSIZE=512
run_sender: cycles = 2287643473
run_sender: Cycles per block transfer = 5719
run_sender: Transfer Rate = 7833388 samples/sec

run_sender: iters=100000, nreceivers=5, BUFFERSIZE=512
run_sender: cycles = 2566313364
run_sender: Cycles per block transfer = 5132
run_sender: Transfer Rate = 8728474 samples/sec

run_sender: iters=100000, nreceivers=6, BUFFERSIZE=512
run_sender: cycles = 3107507609
run_sender: Cycles per block transfer = 5179
run_sender: Transfer Rate = 8650019 samples/sec

run_sender: iters=100000, nreceivers=7, BUFFERSIZE=512
run_sender: cycles = 3254658571
run_sender: Cycles per block transfer = 4649
run_sender: Transfer Rate = 9635419 samples/sec

 47

run_sender: iters=100000, nreceivers=8, BUFFERSIZE=512
run_sender: cycles = 3729559390
run_sender: Cycles per block transfer = 4661
run_sender: Transfer Rate = 9609714 samples/sec

run_sender: iters=100000, nreceivers=9, BUFFERSIZE=512
run_sender: cycles = 4042357031
run_sender: Cycles per block transfer = 4491
run_sender: Transfer Rate = 9974378 samples/sec

run_sender: iters=100000, nreceivers=10, BUFFERSIZE=512
run_sender: cycles = 4545065821
run_sender: Cycles per block transfer = 4545
run_sender: Transfer Rate = 9856842 samples/sec

run_sender: iters=100000, nreceivers=11, BUFFERSIZE=512
run_sender: cycles = 4931927446
run_sender: Cycles per block transfer = 4483
run_sender: Transfer Rate = 9992036 samples/sec

run_sender: iters=100000, nreceivers=12, BUFFERSIZE=512
run_sender: cycles = 5401540548
run_sender: Cycles per block transfer = 4501
run_sender: Transfer Rate = 9952716 samples/sec

run_sender: iters=100000, nreceivers=13, BUFFERSIZE=512
run_sender: cycles = 5799887319
run_sender: Cycles per block transfer = 4461
run_sender: Transfer Rate = 10041574 samples/sec

run_sender: iters=100000, nreceivers=14, BUFFERSIZE=512
run_sender: cycles = 6384539279
run_sender: Cycles per block transfer = 4560
run_sender: Transfer Rate = 9823731 samples/sec

run_sender: iters=100000, nreceivers=15, BUFFERSIZE=512
run_sender: cycles = 6702693130
run_sender: Cycles per block transfer = 4468
run_sender: Transfer Rate = 10025820 samples/sec

run_sender: iters=100000, nreceivers=16, BUFFERSIZE=512
run_sender: cycles = 7217814757
run_sender: Cycles per block transfer = 4511
run_sender: Transfer Rate = 9930983 samples/sec

run_sender: iters=100000, nreceivers=17, BUFFERSIZE=512

 48

run_sender: cycles = 7310522304
run_sender: Cycles per block transfer = 4300
run_sender: Transfer Rate = 10417860 samples/sec

run_sender: iters=100000, nreceivers=18, BUFFERSIZE=512
run_sender: cycles = 7787227030
run_sender: Cycles per block transfer = 4326
run_sender: Transfer Rate = 10355419 samples/sec

run_sender: iters=100000, nreceivers=19, BUFFERSIZE=512
run_sender: cycles = 8376538489
run_sender: Cycles per block transfer = 4408
run_sender: Transfer Rate = 10161715 samples/sec

run_sender: iters=100000, nreceivers=20, BUFFERSIZE=512
run_sender: cycles = 8921883984
run_sender: Cycles per block transfer = 4460
run_sender: Transfer Rate = 10042721 samples/sec

2. Data for N = 256
run_sender: iters=100000, nreceivers=1, BUFFERSIZE=1024
run_sender: cycles = 2791582107
run_sender: Cycles per block transfer = 27915
run_sender: Transfer Rate = 3209649 samples/sec

run_sender: iters=100000, nreceivers=2, BUFFERSIZE=1024
run_sender: cycles = 3098993319
run_sender: Cycles per block transfer = 15494
run_sender: Transfer Rate = 5782522 samples/sec

run_sender: iters=100000, nreceivers=3, BUFFERSIZE=1024
run_sender: cycles = 3181487439
run_sender: Cycles per block transfer = 10604
run_sender: Transfer Rate = 8448878 samples/sec

run_sender: iters=100000, nreceivers=4, BUFFERSIZE=1024
run_sender: cycles = 3141524320
run_sender: Cycles per block transfer = 7853
run_sender: Transfer Rate = 11408474 samples/sec

run_sender: iters=100000, nreceivers=5, BUFFERSIZE=1024
run_sender: cycles = 3385977912
run_sender: Cycles per block transfer = 6771
run_sender: Transfer Rate = 13231037 samples/sec

run_sender: iters=100000, nreceivers=6, BUFFERSIZE=1024

 49

run_sender: cycles = 3500426890
run_sender: Cycles per block transfer = 5834
run_sender: Transfer Rate = 15358126 samples/sec

run_sender: iters=100000, nreceivers=7, BUFFERSIZE=1024
run_sender: cycles = 3387679430
run_sender: Cycles per block transfer = 4839
run_sender: Transfer Rate = 18514148 samples/sec

run_sender: iters=100000, nreceivers=8, BUFFERSIZE=1024
run_sender: cycles = 3814325558
run_sender: Cycles per block transfer = 4767
run_sender: Transfer Rate = 18792313 samples/sec

run_sender: iters=100000, nreceivers=9, BUFFERSIZE=1024
run_sender: cycles = 4190221692
run_sender: Cycles per block transfer = 4655
run_sender: Transfer Rate = 19244805 samples/sec

run_sender: iters=100000, nreceivers=10, BUFFERSIZE=1024
run_sender: cycles = 4610221058
run_sender: Cycles per block transfer = 4610
run_sender: Transfer Rate = 19435076 samples/sec

run_sender: iters=100000, nreceivers=11, BUFFERSIZE=1024
run_sender: cycles = 5057583597
run_sender: Cycles per block transfer = 4597
run_sender: Transfer Rate = 19487567 samples/sec

run_sender: iters=100000, nreceivers=12, BUFFERSIZE=1024
run_sender: cycles = 5497382446
run_sender: Cycles per block transfer = 4581
run_sender: Transfer Rate = 19558399 samples/sec

run_sender: iters=100000, nreceivers=13, BUFFERSIZE=1024
run_sender: cycles = 5949133240
run_sender: Cycles per block transfer = 4576
run_sender: Transfer Rate = 19579322 samples/sec

run_sender: iters=100000, nreceivers=14, BUFFERSIZE=1024
run_sender: cycles = 6330117808
run_sender: Cycles per block transfer = 4521
run_sender: Transfer Rate = 19816376 samples/sec

run_sender: iters=100000, nreceivers=15, BUFFERSIZE=1024
run_sender: cycles = 6842435283
run_sender: Cycles per block transfer = 4561

 50

run_sender: Transfer Rate = 19642129 samples/sec

run_sender: iters=100000, nreceivers=16, BUFFERSIZE=1024
run_sender: cycles = 7447425160
run_sender: Cycles per block transfer = 4654
run_sender: Transfer Rate = 19249605 samples/sec

run_sender: iters=100000, nreceivers=17, BUFFERSIZE=1024
run_sender: cycles = 7703084873
run_sender: Cycles per block transfer = 4531
run_sender: Transfer Rate = 19773896 samples/sec

run_sender: iters=100000, nreceivers=18, BUFFERSIZE=1024
run_sender: cycles = 8176055917
run_sender: Cycles per block transfer = 4542
run_sender: Transfer Rate = 19725892 samples/sec

run_sender: iters=100000, nreceivers=19, BUFFERSIZE=1024
run_sender: cycles = 8684910868
run_sender: Cycles per block transfer = 4571
run_sender: Transfer Rate = 19601813 samples/sec

run_sender: iters=100000, nreceivers=20, BUFFERSIZE=1024
run_sender: cycles = 9243195020
run_sender: Cycles per block transfer = 4621
run_sender: Transfer Rate = 19387235 samples/sec

3. Data for N = 512
run_sender: iters=100000, nreceivers=1, BUFFERSIZE=2048
run_sender: cycles = 4978489886
run_sender: Cycles per block transfer = 49784
run_sender: Transfer Rate = 3599485 samples/sec

run_sender: iters=100000, nreceivers=2, BUFFERSIZE=2048
run_sender: cycles = 5418243924
run_sender: Cycles per block transfer = 27091
run_sender: Transfer Rate = 6614689 samples/sec

run_sender: iters=100000, nreceivers=3, BUFFERSIZE=2048
run_sender: cycles = 5920562990
run_sender: Cycles per block transfer = 19735
run_sender: Transfer Rate = 9080217 samples/sec

run_sender: iters=100000, nreceivers=4, BUFFERSIZE=2048
run_sender: cycles = 6454451171
run_sender: Cycles per block transfer = 16136

 51

run_sender: Transfer Rate = 11105514 samples/sec

run_sender: iters=100000, nreceivers=5, BUFFERSIZE=2048
run_sender: cycles = 7026632496
run_sender: Cycles per block transfer = 14053
run_sender: Transfer Rate = 12751485 samples/sec

run_sender: iters=100000, nreceivers=6, BUFFERSIZE=2048
run_sender: cycles = 7819453536
run_sender: Cycles per block transfer = 13032
run_sender: Transfer Rate = 13750321 samples/sec

run_sender: iters=100000, nreceivers=7, BUFFERSIZE=2048
run_sender: cycles = 5847600257
run_sender: Cycles per block transfer = 8353
run_sender: Transfer Rate = 21451534 samples/sec

run_sender: iters=100000, nreceivers=8, BUFFERSIZE=2048
run_sender: cycles = 6946443559
run_sender: Cycles per block transfer = 8683
run_sender: Transfer Rate = 20637898 samples/sec

run_sender: iters=100000, nreceivers=9, BUFFERSIZE=2048
run_sender: cycles = 8156943181
run_sender: Cycles per block transfer = 9063
run_sender: Transfer Rate = 19772112 samples/sec

run_sender: iters=100000, nreceivers=10, BUFFERSIZE=2048
run_sender: cycles = 9334719083
run_sender: Cycles per block transfer = 9334
run_sender: Transfer Rate = 19197149 samples/sec

run_sender: iters=100000, nreceivers=11, BUFFERSIZE=2048
run_sender: cycles = 10201284233
run_sender: Cycles per block transfer = 9273
run_sender: Transfer Rate = 19323057 samples/sec

run_sender: iters=100000, nreceivers=12, BUFFERSIZE=2048
run_sender: cycles = 8381768798
run_sender: Cycles per block transfer = 6984
run_sender: Transfer Rate = 25655682 samples/sec

run_sender: iters=100000, nreceivers=13, BUFFERSIZE=2048
run_sender: cycles = 9330323210
run_sender: Cycles per block transfer = 7177
run_sender: Transfer Rate = 24968052 samples/sec

 52

run_sender: iters=100000, nreceivers=14, BUFFERSIZE=2048
run_sender: cycles = 9984176673
run_sender: Cycles per block transfer = 7131
run_sender: Transfer Rate = 25127760 samples/sec

run_sender: iters=100000, nreceivers=15, BUFFERSIZE=2048
run_sender: cycles = 10672738943
run_sender: Cycles per block transfer = 7115
run_sender: Transfer Rate = 25185662 samples/sec

run_sender: iters=100000, nreceivers=16, BUFFERSIZE=2048
run_sender: cycles = 11346573180
run_sender: Cycles per block transfer = 7091
run_sender: Transfer Rate = 25269303 samples/sec

run_sender: iters=100000, nreceivers=17, BUFFERSIZE=2048
run_sender: cycles = 11737141434
run_sender: Cycles per block transfer = 6904
run_sender: Transfer Rate = 25955212 samples/sec

run_sender: iters=100000, nreceivers=18, BUFFERSIZE=2048
run_sender: cycles = 12770581530
run_sender: Cycles per block transfer = 7094
run_sender: Transfer Rate = 25258051 samples/sec

run_sender: iters=100000, nreceivers=19, BUFFERSIZE=2048
run_sender: cycles = 13412111301
run_sender: Cycles per block transfer = 7059
run_sender: Transfer Rate = 25386010 samples/sec

run_sender: iters=100000, nreceivers=20, BUFFERSIZE=2048
run_sender: cycles = 14639811187
run_sender: Cycles per block transfer = 7319
run_sender: Transfer Rate = 24481190 samples/sec

4. Data for N = 1024
run_sender: iters=100000, nreceivers=1, BUFFERSIZE=4096
run_sender: cycles = 9903822734
run_sender: Cycles per block transfer = 99038
run_sender: Transfer Rate = 3618804 samples/sec

run_sender: iters=100000, nreceivers=2, BUFFERSIZE=4096
run_sender: cycles = 10839464034
run_sender: Cycles per block transfer = 54197
run_sender: Transfer Rate = 6612873 samples/sec

 53

run_sender: iters=100000, nreceivers=3, BUFFERSIZE=4096
run_sender: cycles = 12168398157
run_sender: Cycles per block transfer = 40561
run_sender: Transfer Rate = 8836002 samples/sec

run_sender: iters=100000, nreceivers=4, BUFFERSIZE=4096
run_sender: cycles = 13697124748
run_sender: Cycles per block transfer = 34242
run_sender: Transfer Rate = 10466430 samples/sec

run_sender: iters=100000, nreceivers=5, BUFFERSIZE=4096
run_sender: cycles = 15811185628
run_sender: Cycles per block transfer = 31622
run_sender: Transfer Rate = 11333748 samples/sec

run_sender: iters=100000, nreceivers=6, BUFFERSIZE=4096
run_sender: cycles = 17417132283
run_sender: Cycles per block transfer = 29028
run_sender: Transfer Rate = 12346464 samples/sec

run_sender: iters=100000, nreceivers=7, BUFFERSIZE=4096
run_sender: cycles = 15139625774
run_sender: Cycles per block transfer = 21628
run_sender: Transfer Rate = 16571083 samples/sec

run_sender: iters=100000, nreceivers=8, BUFFERSIZE=4096
run_sender: cycles = 12741296888
run_sender: Cycles per block transfer = 15926
run_sender: Transfer Rate = 22503203 samples/sec

run_sender: iters=100000, nreceivers=9, BUFFERSIZE=4096
run_sender: cycles = 15022229028
run_sender: Cycles per block transfer = 16691
run_sender: Transfer Rate = 21472179 samples/sec

run_sender: iters=100000, nreceivers=10, BUFFERSIZE=4096
run_sender: cycles = 14879141915
run_sender: Cycles per block transfer = 14879
run_sender: Transfer Rate = 24087410 samples/sec

run_sender: iters=100000, nreceivers=11, BUFFERSIZE=4096
run_sender: cycles = 14892368820
run_sender: Cycles per block transfer = 13538
run_sender: Transfer Rate = 26472618 samples/sec

run_sender: iters=100000, nreceivers=12, BUFFERSIZE=4096
run_sender: cycles = 15735538711

 54

run_sender: Cycles per block transfer = 13112
run_sender: Transfer Rate = 27331762 samples/sec

run_sender: iters=100000, nreceivers=13, BUFFERSIZE=4096
run_sender: cycles = 20960949070
run_sender: Cycles per block transfer = 16123
run_sender: Transfer Rate = 22228001 samples/sec

run_sender: iters=100000, nreceivers=14, BUFFERSIZE=4096
run_sender: cycles = 22012817294
run_sender: Cycles per block transfer = 15723
run_sender: Transfer Rate = 22793992 samples/sec

run_sender: iters=100000, nreceivers=15, BUFFERSIZE=4096
run_sender: cycles = 22325582293
run_sender: Cycles per block transfer = 14883
run_sender: Transfer Rate = 24079999 samples/sec

run_sender: iters=100000, nreceivers=16, BUFFERSIZE=4096
run_sender: cycles = 21544904761
run_sender: Cycles per block transfer = 13465
run_sender: Transfer Rate = 26616037 samples/sec

run_sender: iters=100000, nreceivers=17, BUFFERSIZE=4096
run_sender: cycles = 24711916375
run_sender: Cycles per block transfer = 14536
run_sender: Transfer Rate = 24655311 samples/sec

run_sender: iters=100000, nreceivers=18, BUFFERSIZE=4096
run_sender: cycles = 24265874835
run_sender: Cycles per block transfer = 13481
run_sender: Transfer Rate = 26585482 samples/sec

run_sender: iters=100000, nreceivers=19, BUFFERSIZE=4096
run_sender: cycles = 25443068580
run_sender: Cycles per block transfer = 13391
run_sender: Transfer Rate = 26764067 samples/sec

run_sender: iters=100000, nreceivers=20, BUFFERSIZE=4096
run_sender: cycles = 29676664231
run_sender: Cycles per block transfer = 14838
run_sender: Transfer Rate = 24153658 samples/sec

5. Data for N = 2048
run_sender: iters=100000, nreceivers=1, BUFFERSIZE=8192
run_sender: cycles = 21957583650

 55

run_sender: Cycles per block transfer = 219575
run_sender: Transfer Rate = 3264475 samples/sec

run_sender: iters=100000, nreceivers=2, BUFFERSIZE=8192
run_sender: cycles = 25786960848
run_sender: Cycles per block transfer = 128934
run_sender: Transfer Rate = 5559398 samples/sec

run_sender: iters=100000, nreceivers=3, BUFFERSIZE=8192
run_sender: cycles = 29117933559
run_sender: Cycles per block transfer = 97059
run_sender: Transfer Rate = 7385139 samples/sec

run_sender: iters=100000, nreceivers=4, BUFFERSIZE=8192
run_sender: cycles = 30139314757
run_sender: Cycles per block transfer = 75348
run_sender: Transfer Rate = 9513155 samples/sec

run_sender: iters=100000, nreceivers=5, BUFFERSIZE=8192
run_sender: cycles = 32404723357
run_sender: Cycles per block transfer = 64809
run_sender: Transfer Rate = 11060116 samples/sec

run_sender: iters=100000, nreceivers=6, BUFFERSIZE=8192
run_sender: cycles = 35749882192
run_sender: Cycles per block transfer = 59583
run_sender: Transfer Rate = 12030249 samples/sec

run_sender: iters=100000, nreceivers=7, BUFFERSIZE=8192
run_sender: cycles = 34799440259
run_sender: Cycles per block transfer = 49713
run_sender: Transfer Rate = 14418622 samples/sec

run_sender: iters=100000, nreceivers=8, BUFFERSIZE=8192
run_sender: cycles = 25518142889
run_sender: Cycles per block transfer = 31897
run_sender: Transfer Rate = 22471854 samples/sec

run_sender: iters=100000, nreceivers=9, BUFFERSIZE=8192
run_sender: cycles = 35749429667
run_sender: Cycles per block transfer = 39721
run_sender: Transfer Rate = 18045602 samples/sec

run_sender: iters=100000, nreceivers=10, BUFFERSIZE=8192
run_sender: cycles = 36182445261
run_sender: Cycles per block transfer = 36182
run_sender: Transfer Rate = 19810711 samples/sec

 56

run_sender: iters=100000, nreceivers=11, BUFFERSIZE=8192
run_sender: cycles = 34904862567
run_sender: Cycles per block transfer = 31731
run_sender: Transfer Rate = 22589402 samples/sec

run_sender: iters=100000, nreceivers=12, BUFFERSIZE=8192
run_sender: cycles = 38809087133
run_sender: Cycles per block transfer = 32340
run_sender: Transfer Rate = 22163881 samples/sec

run_sender: iters=100000, nreceivers=13, BUFFERSIZE=8192
run_sender: cycles = 39326853112
run_sender: Cycles per block transfer = 30251
run_sender: Transfer Rate = 23694751 samples/sec

run_sender: iters=100000, nreceivers=14, BUFFERSIZE=8192
run_sender: cycles = 42482567546
run_sender: Cycles per block transfer = 30344
run_sender: Transfer Rate = 23621924 samples/sec

run_sender: iters=100000, nreceivers=15, BUFFERSIZE=8192
run_sender: cycles = 41767561157
run_sender: Cycles per block transfer = 27845
run_sender: Transfer Rate = 25742465 samples/sec

run_sender: iters=100000, nreceivers=16, BUFFERSIZE=8192
run_sender: cycles = 45359091641
run_sender: Cycles per block transfer = 28349
run_sender: Transfer Rate = 25284456 samples/sec

run_sender: iters=100000, nreceivers=17, BUFFERSIZE=8192
run_sender: cycles = 47660219939
run_sender: Cycles per block transfer = 28035
run_sender: Transfer Rate = 25567653 samples/sec

run_sender: iters=100000, nreceivers=18, BUFFERSIZE=8192
run_sender: cycles = 48612930279
run_sender: Cycles per block transfer = 27007
run_sender: Transfer Rate = 26541086 samples/sec

run_sender: iters=100000, nreceivers=19, BUFFERSIZE=8192
run_sender: cycles = 50663798563
run_sender: Cycles per block transfer = 26665
run_sender: Transfer Rate = 26881521 samples/sec

run_sender: iters=100000, nreceivers=20, BUFFERSIZE=8192

 57

run_sender: cycles = 51987647456
run_sender: Cycles per block transfer = 25993
run_sender: Transfer Rate = 27575781 samples/sec

 58

LIST OF REFERENCES

[1] Herschel Loomis, et al., "Reliable Architectures for High-Performance Space-Based

Software Defined Radios (U)," Naval Postgraduate School, Monterey, CA, 2011.
[2] D. Summers, Design and Construction of a Fault-tolerant Computer, Monterey, CA:

Naval Postgraduate School, 2000.
[3] Boeing Corporation, "Intellectual Property Summary," Seattle, 2010.
[4] "OPERA project Industry Day," Aerospace Corporation (J.P. Campbell

Auditorium), 15049 Conference Center Drive, Chantilly, VA, 10/29-30/2010.
[5] Air Force Research Laboratory (AFRL) Program manager-

creigh.gordon@kirtland.af.mil, "Air Force Research Laboratory (AFRL) Single
Event Immune Reconfigurable FPGA (SIRF) program (Xilinx V5QV)," Sunnyvale,
CA, 2011.

[6] Earl Fuller, Michael Caffrey, Anthony Salazar, Carl Carmichael, Joe Fabula,
"Radiation Characterization and SEU Mitigation of the Virtex FPGA for Space-
Based Reconfigurable Computing," in Proceedings of NSREC2000.

[7] Capt. Charles A. Hulme, USMC, Dr. Herschel H. Loomis, Dr. Alan A. Ross, and
1Lt. Rong Yuan, Taiwan Air Force, "Configurable Fault-Tolerant Processor (CFTP)
for Spacecraft Onboard Processing," in Proceedings 2004 IEEE Aerospace
Conference, Big Sky, Montana, March 2004.

[8] Wright, Durke, LT USN, "Field Programmable Gate Array (FPGA) Based Software
Defined Radio (SDR) Design," MSEE Thesis, Naval Postgraduate School,
Monterey, CA, March 2009.

[9] Livingston, Jeremy, "A Field Programmable Gate Array Based Software Defined
Radio Design for the Space Environment," MSEE Thesis, Naval Postgraduate
School, Monterey, CA, December 2009.

[10] Raymond F. Bernstein, Jr., "A Pipelined Vector Processor and Memory Architecture
for Cyclostationary Processing," PhD Dissertation, Naval Postgraduate School,
Monterey, CA, December 1995.

[11] LTJG Athanasios Gavros, Prof. Herschel H. Loomis, Jr., Prof. Alan A. Ross,
"Reduced Precision Redundancy in a Radix-4 FFT Implementation on a Field
Programmable Gate Array," in Proceedings of the 2011 IEEE Aerospace Conference
, Big Sky, Montana, March 2011.

[12] Herschel Loomis and Alan Ross , "OPERA/MAESTRO Fault Tolerance Issues,"
Naval Postgraduate School Report, Monterey, CA, 31 July 2009.

[13] Humberd, Caleb J., LT USN, "A Compression Algorithm for Field Programmable
Gate Arrays in the Space Environment," MSEE Thesis, Naval Postgraduate School,
Monterey, CA, December 2011.

[14] Karandeep Singh, John Paul Walters, Joel Hestness, Jinwoo Suh, Craig M. Rogers,

 59

Stephen P. Crago, "FFTW and Complex Ambiguity Function Performance on the
Maestro Processor," in Proceedings, 2011 IEEE Aerospace Conference, Big Sky,
Montana, March, 2011.

[15] "Maestro Software and Documentation IP Web Site," Maestro Project, [Online].
Available: https://opera.isi.edu/Software_IP. [Accessed 2013].

 60

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library

Naval Postgraduate School
Monterey, California

3. Research Sponsored Programs Office, Code 41

Naval Postgraduate School
Monterey, CA 93943

4. Maestro project wiki

c/o Martha Bancroft
marti@dragonsden.com

5. Dr. Stephen P. Crago

University of Southern California / Information Sciences Institute
3811 N. Fairfax, Suite 200
Arlington, VA 22203
crago@isi.edu

 61

THIS PAGE INTENTIONALLY LEFT BLANK

 62

	I. Introduction
	A. Problem statement
	1. Specific Tasks Originally Proposed
	2. Structure of Funded Work

	B. background
	C. Report organization

	II. Pipelined SDR architecture
	A. specific pre-d data compression sdr
	B. maestro fft architectures
	1. Maestro SDR Architecture
	2. FFT Program Used for FFT Tiles

	III. maestro-based fft experiments
	A. Pipeline FFT implementations
	1. Verification of the Correctness of the FFTW

	B. FFT performance measuring experiments
	C. FFT Experimental results
	D. Application of results to Sdr performance

	IV. Conclusions and recommendations for further study
	A. Conclusions
	B. Recommendations for future study

	Appendix A
	1. makefile
	2. Include File – simpledma.h
	3. startdma.c
	4. run_sender.c
	5. run_receiver.c
	6. run_sink.c
	7. start3dma.c

	appendix B.
	1. Data for N = 128
	2. Data for N = 256
	3. Data for N = 512
	4. Data for N = 1024
	5. Data for N = 2048

	LIST OF REFERENCES
	INITIAL DISTRIBUTION LIST

